重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification

人工智能 支持向量机 希尔伯特-黄变换 心音图 计算机科学 模式识别(心理学) 特征选择 机器学习 分类器(UML) 随机森林 特征提取 深信不疑网络 心音 频域 语音识别 深度学习 医学 白噪声 内科学 电信 计算机视觉
作者
Yineng Zheng,Xingming Guo,Yingying Wang,Jian Qin,Fajin Lv
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (6): 065002-065002 被引量:16
标识
DOI:10.1088/1361-6579/ac6d40
摘要

Abstract Objective. Heart sounds can reflect detrimental changes in cardiac mechanical activity that are common pathological characteristics of chronic heart failure (CHF). The ACC/AHA heart failure (HF) stage classification is essential for clinical decision-making and the management of CHF. Herein, a machine learning model that makes use of multi-scale and multi-domain heart sound features was proposed to provide an objective aid for ACC/AHA HF stage classification. Approach. A dataset containing phonocardiogram (PCG) signals from 275 subjects was obtained from two medical institutions and used in this study. Complementary ensemble empirical mode decomposition and tunable-Q wavelet transform were used to construct self-adaptive sub-sequences and multi-level sub-band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extraction were then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct multi-scale and multi-domain heart sound features. The features selected via the least absolute shrinkage and selection operator were fed into a machine learning classifier for ACC/AHA HF stage classification. Finally, mainstream machine learning classifiers, including least-squares support vector machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine the optimal model. Main results . The results showed that the LS-SVM, which utilized a combination of multi-scale and multi-domain features, achieved better classification performance than the DBN and RF using multi-scale or/and multi-domain features alone or together, with average sensitivity, specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively. Significance. PCG signal analysis provides efficient measurement information regarding CHF severity and is a promising noninvasive method for ACC/AHA HF stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moreee完成签到,获得积分10
刚刚
1秒前
刘玲发布了新的文献求助30
1秒前
lxrsee发布了新的文献求助10
1秒前
阔达的沛儿完成签到 ,获得积分10
1秒前
1秒前
凌泉发布了新的文献求助20
1秒前
111完成签到,获得积分10
2秒前
2秒前
黑神白了发布了新的文献求助10
3秒前
呵呵啊哈完成签到,获得积分10
3秒前
pcr163发布了新的文献求助10
3秒前
xxxx发布了新的文献求助10
4秒前
燕子发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
祁尒完成签到,获得积分10
5秒前
5秒前
5秒前
ylll完成签到,获得积分10
5秒前
幽默问凝完成签到,获得积分10
6秒前
grace发布了新的文献求助10
7秒前
滾滾完成签到,获得积分10
7秒前
7秒前
黄柠檬发布了新的文献求助10
7秒前
酷波er应助潇潇木子采纳,获得10
7秒前
HAHAHA发布了新的文献求助10
7秒前
祯元小猫发布了新的文献求助10
7秒前
传奇3应助煜琪采纳,获得10
7秒前
7秒前
8秒前
8秒前
愉快的枕头完成签到,获得积分10
8秒前
飞得更高发布了新的文献求助10
9秒前
10秒前
10秒前
晓霞完成签到,获得积分10
10秒前
glacial发布了新的文献求助10
11秒前
Ruby发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673