A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification

人工智能 支持向量机 希尔伯特-黄变换 心音图 计算机科学 模式识别(心理学) 特征选择 机器学习 分类器(UML) 随机森林 特征提取 深信不疑网络 心音 频域 语音识别 深度学习 医学 白噪声 内科学 电信 计算机视觉
作者
Yineng Zheng,Xingming Guo,Yingying Wang,Jian Qin,Fajin Lv
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (6): 065002-065002 被引量:8
标识
DOI:10.1088/1361-6579/ac6d40
摘要

Objective.Heart sounds can reflect detrimental changes in cardiac mechanical activity that are common pathological characteristics of chronic heart failure (CHF). The ACC/AHA heart failure (HF) stage classification is essential for clinical decision-making and the management of CHF. Herein, a machine learning model that makes use of multi-scale and multi-domain heart sound features was proposed to provide an objective aid for ACC/AHA HF stage classification.Approach.A dataset containing phonocardiogram (PCG) signals from 275 subjects was obtained from two medical institutions and used in this study. Complementary ensemble empirical mode decomposition and tunable-Q wavelet transform were used to construct self-adaptive sub-sequences and multi-level sub-band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extraction were then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct multi-scale and multi-domain heart sound features. The features selected via the least absolute shrinkage and selection operator were fed into a machine learning classifier for ACC/AHA HF stage classification. Finally, mainstream machine learning classifiers, including least-squares support vector machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine the optimal model.Main results. The results showed that the LS-SVM, which utilized a combination of multi-scale and multi-domain features, achieved better classification performance than the DBN and RF using multi-scale or/and multi-domain features alone or together, with average sensitivity, specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively.Significance.PCG signal analysis provides efficient measurement information regarding CHF severity and is a promising noninvasive method for ACC/AHA HF stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LPX完成签到,获得积分20
1秒前
2秒前
Bonnie发布了新的文献求助10
3秒前
小谷发布了新的文献求助10
3秒前
4秒前
兰天发布了新的文献求助30
4秒前
cj819发布了新的文献求助10
4秒前
Shrine发布了新的文献求助10
4秒前
无花果应助二二春采纳,获得10
5秒前
5秒前
zmy完成签到,获得积分10
5秒前
jian94完成签到,获得积分10
5秒前
rio发布了新的文献求助10
6秒前
羊羊羊完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
ggg关闭了ggg文献求助
10秒前
繁荣的从灵完成签到,获得积分10
10秒前
wsh发布了新的文献求助10
10秒前
11秒前
MrFamous发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
东少完成签到,获得积分10
11秒前
mxt发布了新的文献求助10
12秒前
海边的卡夫卡完成签到,获得积分10
12秒前
充电宝应助霜月露白采纳,获得10
13秒前
14秒前
明亮迎丝发布了新的文献求助10
15秒前
15秒前
hms完成签到 ,获得积分10
15秒前
16秒前
脑洞疼应助小谷采纳,获得10
16秒前
16秒前
老默发布了新的文献求助10
17秒前
芹菜完成签到,获得积分10
17秒前
huzhu123完成签到,获得积分10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798