A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification

人工智能 支持向量机 希尔伯特-黄变换 心音图 计算机科学 模式识别(心理学) 特征选择 机器学习 分类器(UML) 随机森林 特征提取 深信不疑网络 心音 频域 语音识别 深度学习 医学 白噪声 内科学 电信 计算机视觉
作者
Yineng Zheng,Xingming Guo,Yingying Wang,Jian Qin,Fajin Lv
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (6): 065002-065002 被引量:16
标识
DOI:10.1088/1361-6579/ac6d40
摘要

Abstract Objective. Heart sounds can reflect detrimental changes in cardiac mechanical activity that are common pathological characteristics of chronic heart failure (CHF). The ACC/AHA heart failure (HF) stage classification is essential for clinical decision-making and the management of CHF. Herein, a machine learning model that makes use of multi-scale and multi-domain heart sound features was proposed to provide an objective aid for ACC/AHA HF stage classification. Approach. A dataset containing phonocardiogram (PCG) signals from 275 subjects was obtained from two medical institutions and used in this study. Complementary ensemble empirical mode decomposition and tunable-Q wavelet transform were used to construct self-adaptive sub-sequences and multi-level sub-band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extraction were then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct multi-scale and multi-domain heart sound features. The features selected via the least absolute shrinkage and selection operator were fed into a machine learning classifier for ACC/AHA HF stage classification. Finally, mainstream machine learning classifiers, including least-squares support vector machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine the optimal model. Main results . The results showed that the LS-SVM, which utilized a combination of multi-scale and multi-domain features, achieved better classification performance than the DBN and RF using multi-scale or/and multi-domain features alone or together, with average sensitivity, specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively. Significance. PCG signal analysis provides efficient measurement information regarding CHF severity and is a promising noninvasive method for ACC/AHA HF stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cct发布了新的文献求助20
刚刚
测量幽冥完成签到 ,获得积分10
1秒前
上官若男应助lelele采纳,获得10
1秒前
李健的小迷弟应助学勾巴采纳,获得20
2秒前
3秒前
隐形曼青应助李幺幺采纳,获得10
3秒前
lai完成签到,获得积分10
3秒前
宋温暖应助44采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
李健应助15348547697采纳,获得10
5秒前
诚心盼海发布了新的文献求助10
5秒前
yang123完成签到,获得积分20
5秒前
稳重电话完成签到,获得积分10
5秒前
5秒前
6秒前
高贵谷芹完成签到,获得积分10
6秒前
科研通AI6应助小羊羔采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
zzz发布了新的文献求助10
7秒前
7秒前
8秒前
maomao201026发布了新的文献求助10
8秒前
yan123完成签到,获得积分10
8秒前
共享精神应助chai采纳,获得10
8秒前
Apricity应助wuxunxun2015采纳,获得10
8秒前
8秒前
tina完成签到,获得积分10
9秒前
科研顺利发布了新的文献求助10
10秒前
yang123发布了新的文献求助10
10秒前
11秒前
zzz发布了新的文献求助10
11秒前
熊猫发布了新的文献求助10
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592