A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification

人工智能 支持向量机 希尔伯特-黄变换 心音图 计算机科学 模式识别(心理学) 特征选择 机器学习 分类器(UML) 随机森林 特征提取 深信不疑网络 心音 频域 语音识别 深度学习 医学 白噪声 内科学 电信 计算机视觉
作者
Yineng Zheng,Xingming Guo,Yingying Wang,Jian Qin,Fajin Lv
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (6): 065002-065002 被引量:8
标识
DOI:10.1088/1361-6579/ac6d40
摘要

Objective.Heart sounds can reflect detrimental changes in cardiac mechanical activity that are common pathological characteristics of chronic heart failure (CHF). The ACC/AHA heart failure (HF) stage classification is essential for clinical decision-making and the management of CHF. Herein, a machine learning model that makes use of multi-scale and multi-domain heart sound features was proposed to provide an objective aid for ACC/AHA HF stage classification.Approach.A dataset containing phonocardiogram (PCG) signals from 275 subjects was obtained from two medical institutions and used in this study. Complementary ensemble empirical mode decomposition and tunable-Q wavelet transform were used to construct self-adaptive sub-sequences and multi-level sub-band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extraction were then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct multi-scale and multi-domain heart sound features. The features selected via the least absolute shrinkage and selection operator were fed into a machine learning classifier for ACC/AHA HF stage classification. Finally, mainstream machine learning classifiers, including least-squares support vector machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine the optimal model.Main results. The results showed that the LS-SVM, which utilized a combination of multi-scale and multi-domain features, achieved better classification performance than the DBN and RF using multi-scale or/and multi-domain features alone or together, with average sensitivity, specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively.Significance.PCG signal analysis provides efficient measurement information regarding CHF severity and is a promising noninvasive method for ACC/AHA HF stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wrr完成签到,获得积分10
刚刚
橘酥酥呀完成签到,获得积分10
刚刚
PDY发布了新的文献求助10
刚刚
1秒前
研友_ZzaKqn完成签到,获得积分10
1秒前
1秒前
再生极强的-涡虫完成签到,获得积分10
1秒前
SYC完成签到,获得积分10
2秒前
慕青应助feifei采纳,获得10
2秒前
沉睡的大马猴完成签到,获得积分10
3秒前
wrr发布了新的文献求助10
4秒前
5秒前
1a完成签到 ,获得积分10
5秒前
5秒前
炙热萝发布了新的文献求助10
5秒前
imomoe完成签到,获得积分10
6秒前
ZL完成签到,获得积分10
6秒前
传奇3应助cherishT采纳,获得30
6秒前
7秒前
香菜完成签到,获得积分10
8秒前
张先生2365完成签到 ,获得积分10
8秒前
xinxin完成签到,获得积分10
8秒前
乐哉完成签到,获得积分10
8秒前
9秒前
入门的橙橙完成签到 ,获得积分10
9秒前
理想三旬完成签到,获得积分10
9秒前
坦率尔琴完成签到,获得积分10
10秒前
田様应助mir为少采纳,获得10
10秒前
Alvin发布了新的文献求助20
10秒前
10秒前
迷路毛豆完成签到,获得积分10
10秒前
小羊先生完成签到 ,获得积分10
11秒前
论文多多完成签到,获得积分10
11秒前
杰瑞完成签到,获得积分10
11秒前
12秒前
浮云完成签到,获得积分10
12秒前
himmer完成签到,获得积分10
12秒前
13秒前
我要发十篇sci完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150787
求助须知:如何正确求助?哪些是违规求助? 2802284
关于积分的说明 7847147
捐赠科研通 2459632
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628884
版权声明 601757