Self-adaptive loss balanced Physics-informed neural networks

人工神经网络 计算机科学 统计物理学 人工智能 物理
作者
Zixue Xiang,Wei Peng,Xü Liu,Wen Yao
出处
期刊:Neurocomputing [Elsevier]
卷期号:496: 11-34 被引量:184
标识
DOI:10.1016/j.neucom.2022.05.015
摘要

Physics-informed neural networks (PINNs) have received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). The loss function of PINNs is a weighted sum of multiple terms, including the mismatch of observed data, boundary and initial constraints, as well as PDE residuals. In this paper, we observe that the performance of PINNs is susceptible to the weighted combination of competitive multiple loss functions. Therefore, we establish Gaussian probabilistic models to define the self-adaptive loss function through the adaptive weights for each loss term. In particular, we propose a self-adaptive loss balanced method that automatically assigns the weights of losses by updating adaptive weights in each epoch based on the maximum likelihood estimation. Finally, we perform a series of numerical experiments with self-adaptive loss balanced physics-informed neural networks (lbPINNs), including solving Poisson, Burgers, Helmholtz, Navier–Stokes, and Allen–Cahn equations in regular and irregular areas. We also test the robustness of lbPINNs by varying the initial adaptive weights, numbers of observations, hidden layers, and neurons per layer. These experimental results demonstrate that lbPINNs consistently achieve better performance than PINNs, and reduce the relative L2 error by about two orders of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd36完成签到,获得积分10
刚刚
wanci应助笨笨凝雁采纳,获得10
刚刚
刚刚
rsdggsrser完成签到,获得积分10
刚刚
科研垃圾制造机完成签到,获得积分10
1秒前
Rez完成签到,获得积分10
1秒前
听雨发布了新的文献求助10
2秒前
2秒前
2秒前
可爱安筠完成签到,获得积分10
3秒前
Ava应助liwenqiang采纳,获得10
3秒前
我是老大应助qinzhi采纳,获得10
4秒前
4秒前
机智向松完成签到,获得积分10
4秒前
凌柏完成签到,获得积分10
5秒前
小白完成签到 ,获得积分10
5秒前
顾一刀完成签到,获得积分10
5秒前
Math4396完成签到 ,获得积分10
5秒前
NexusExplorer应助Wang采纳,获得10
6秒前
听雨完成签到,获得积分10
6秒前
6秒前
7秒前
求助应助研友_LOakVZ采纳,获得10
8秒前
大聪明发布了新的文献求助10
8秒前
赟yun完成签到,获得积分0
8秒前
陈醒醒应助庞威采纳,获得10
9秒前
9秒前
shi hui发布了新的文献求助10
9秒前
qqq完成签到,获得积分10
9秒前
鳗鱼思卉完成签到,获得积分10
9秒前
卜应完成签到,获得积分10
10秒前
包容又琴发布了新的文献求助10
10秒前
10秒前
Pony完成签到,获得积分10
11秒前
12秒前
xzy998应助roking采纳,获得10
12秒前
13秒前
ws完成签到 ,获得积分10
13秒前
wmk发布了新的文献求助10
13秒前
薇薇辣发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294903
求助须知:如何正确求助?哪些是违规求助? 2930836
关于积分的说明 8448491
捐赠科研通 2603199
什么是DOI,文献DOI怎么找? 1421009
科研通“疑难数据库(出版商)”最低求助积分说明 660770
邀请新用户注册赠送积分活动 643592