Self-adaptive loss balanced Physics-informed neural networks

人工神经网络 计算机科学 统计物理学 人工智能 物理
作者
Zixue Xiang,Wei Peng,Xü Liu,Wen Yao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:496: 11-34 被引量:255
标识
DOI:10.1016/j.neucom.2022.05.015
摘要

Physics-informed neural networks (PINNs) have received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). The loss function of PINNs is a weighted sum of multiple terms, including the mismatch of observed data, boundary and initial constraints, as well as PDE residuals. In this paper, we observe that the performance of PINNs is susceptible to the weighted combination of competitive multiple loss functions. Therefore, we establish Gaussian probabilistic models to define the self-adaptive loss function through the adaptive weights for each loss term. In particular, we propose a self-adaptive loss balanced method that automatically assigns the weights of losses by updating adaptive weights in each epoch based on the maximum likelihood estimation. Finally, we perform a series of numerical experiments with self-adaptive loss balanced physics-informed neural networks (lbPINNs), including solving Poisson, Burgers, Helmholtz, Navier–Stokes, and Allen–Cahn equations in regular and irregular areas. We also test the robustness of lbPINNs by varying the initial adaptive weights, numbers of observations, hidden layers, and neurons per layer. These experimental results demonstrate that lbPINNs consistently achieve better performance than PINNs, and reduce the relative L2 error by about two orders of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ilc采纳,获得10
刚刚
小黄发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
无极微光应助宣孤菱采纳,获得20
3秒前
3秒前
小章鱼完成签到 ,获得积分10
4秒前
段蕤完成签到,获得积分10
4秒前
时林完成签到,获得积分10
4秒前
5秒前
6秒前
小写完成签到,获得积分10
7秒前
星星发布了新的文献求助10
7秒前
梦初醒处完成签到,获得积分10
7秒前
7秒前
liv完成签到,获得积分10
8秒前
9秒前
9秒前
摆烂蛋挞完成签到,获得积分20
10秒前
Du完成签到,获得积分10
10秒前
汪洋浮萍一道开完成签到,获得积分10
10秒前
10秒前
11秒前
隐形曼青应助小海豚采纳,获得30
11秒前
果蝇之母发布了新的文献求助10
12秒前
13秒前
13秒前
SF完成签到,获得积分10
13秒前
13秒前
梨花雨凉发布了新的文献求助10
13秒前
廾匸发布了新的文献求助50
13秒前
13秒前
14秒前
14秒前
搜集达人应助友好的鲜花采纳,获得10
14秒前
039Hc完成签到,获得积分10
14秒前
You完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913842
求助须知:如何正确求助?哪些是违规求助? 4188429
关于积分的说明 13007911
捐赠科研通 3957127
什么是DOI,文献DOI怎么找? 2169546
邀请新用户注册赠送积分活动 1187932
关于科研通互助平台的介绍 1095439