亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-adaptive loss balanced Physics-informed neural networks

人工神经网络 计算机科学 统计物理学 人工智能 物理
作者
Zixue Xiang,Wei Peng,Xü Liu,Wen Yao
出处
期刊:Neurocomputing [Elsevier]
卷期号:496: 11-34 被引量:317
标识
DOI:10.1016/j.neucom.2022.05.015
摘要

Physics-informed neural networks (PINNs) have received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). The loss function of PINNs is a weighted sum of multiple terms, including the mismatch of observed data, boundary and initial constraints, as well as PDE residuals. In this paper, we observe that the performance of PINNs is susceptible to the weighted combination of competitive multiple loss functions. Therefore, we establish Gaussian probabilistic models to define the self-adaptive loss function through the adaptive weights for each loss term. In particular, we propose a self-adaptive loss balanced method that automatically assigns the weights of losses by updating adaptive weights in each epoch based on the maximum likelihood estimation. Finally, we perform a series of numerical experiments with self-adaptive loss balanced physics-informed neural networks (lbPINNs), including solving Poisson, Burgers, Helmholtz, Navier–Stokes, and Allen–Cahn equations in regular and irregular areas. We also test the robustness of lbPINNs by varying the initial adaptive weights, numbers of observations, hidden layers, and neurons per layer. These experimental results demonstrate that lbPINNs consistently achieve better performance than PINNs, and reduce the relative L2 error by about two orders of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
110o完成签到,获得积分10
28秒前
110o发布了新的文献求助10
33秒前
浮游应助科研通管家采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
Kashing完成签到,获得积分0
2分钟前
3分钟前
Lin发布了新的文献求助10
3分钟前
典雅的夜梦完成签到 ,获得积分10
3分钟前
3分钟前
Lin完成签到,获得积分10
4分钟前
XY完成签到 ,获得积分10
4分钟前
西柚柠檬完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
微笑的皮卡丘完成签到,获得积分10
5分钟前
Akim应助luyang采纳,获得10
5分钟前
5分钟前
sissiarno应助Kamalika采纳,获得200
6分钟前
daomaihu完成签到,获得积分20
6分钟前
顾矜应助刚刚好-LG采纳,获得30
7分钟前
7分钟前
小新小新完成签到 ,获得积分10
7分钟前
jj发布了新的文献求助10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
jj完成签到,获得积分20
7分钟前
7分钟前
大个应助盐咸小狗采纳,获得10
7分钟前
xl发布了新的文献求助10
7分钟前
科研通AI2S应助jj采纳,获得10
7分钟前
8分钟前
盐咸小狗发布了新的文献求助10
8分钟前
8分钟前
8分钟前
luyang发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292524
求助须知:如何正确求助?哪些是违规求助? 4443053
关于积分的说明 13830835
捐赠科研通 4326500
什么是DOI,文献DOI怎么找? 2374916
邀请新用户注册赠送积分活动 1370236
关于科研通互助平台的介绍 1334763