亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning networks for real-time regional domestic waste detection

分类 目标检测 计算机科学 过程(计算) 自动化 对象(语法) 深度学习 多样性(控制论) 人工智能 工程类 模式识别(心理学) 机械工程 操作系统 程序设计语言
作者
Wei-Lung Mao,Wei-Chun Chen,Haris Imam Karim Fathurrahman,Yu-Hao Lin
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:344: 131096-131096 被引量:8
标识
DOI:10.1016/j.jclepro.2022.131096
摘要

Waste sorting is highly labor intensive because the wide variety of waste items prohibits automation. More recently, deep learning (DL) and computer vision technology has presented an opportunity to streamline the sorting process, but many important developmental steps remain. If computer vision technology can increase the efficiency of automated waste sorting, this would be beneficial for society and the environment. Accordingly, this study used the You Only Look Once-v3 (Yolo-v3) detection model based on DL to enhance recognition performance of household waste products. TrashNet, a commonly used waste image database, was used to train an initial Yolo-v3 model, however each image used for training only had a single waste object, and this study found that the detection model trained with a single object dataset was not only unsuitable for sorting multiple waste objects, but that this has rarely been addressed in academic literature. It was also discovered that nations and regions will need to develop their own unique databases that reflect the types of waste products found. Samples images need to account for the various appearances and colors and be combined in multiple waste object images when training the system. This paper documents the training and testing of an object detection model suitable for detecting domestic waste specific to Taiwan; however, the approach taken would be of use to other countries seeking to automate waste sorting. To achieve this, it was necessary to compile the Taiwan Recycled Waste Database (TRWD). This was then used to train the Yolo-v3, and the efficiencies of this, versus the standard TrashNet model were compared. Results showed that the TRWD-trained Yolo-v3 achieved mAP @0.5 of 92.12% and could detect waste in real-time. Relative to the TrashNet-trained Yolo-v3, the TRWD counterpart performed better due to the multiple waste objects and more relevant image repository. Further studies are recommended to investigate the effect of combining additional sensors that would enable improved detection of specific wastes. Combining the TRWD-trained Yolo-v3 with a robot system for waste sorting would potentially be another rewarding avenue of research. • Automatic waste detection improves waste recycling efficiency. • Different nations require customized datasets to train Yolo-v3 detection model. • Taiwan recycled waste dataset (TRWD) was expanded to improve detection rates. • Yolo-v3 trained on the TRWD outperformed the same system using TrashNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
13秒前
凯旋预言完成签到 ,获得积分10
20秒前
Djnsbj发布了新的文献求助10
20秒前
28秒前
花陵完成签到 ,获得积分10
34秒前
38秒前
共享精神应助Djnsbj采纳,获得10
47秒前
隐形曼青应助556采纳,获得10
1分钟前
李健的小迷弟应助556采纳,获得10
1分钟前
ShiYanYang完成签到,获得积分10
1分钟前
1分钟前
frap完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
NinG完成签到,获得积分20
2分钟前
2分钟前
NinG发布了新的文献求助10
2分钟前
Djnsbj发布了新的文献求助10
2分钟前
2分钟前
莱芙完成签到 ,获得积分10
2分钟前
riccixuu完成签到 ,获得积分10
2分钟前
CipherSage应助寒冷苗条采纳,获得30
2分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
3分钟前
556发布了新的文献求助10
3分钟前
3分钟前
Djnsbj发布了新的文献求助10
3分钟前
寒冷苗条发布了新的文献求助30
3分钟前
霖铃完成签到,获得积分20
3分钟前
wanci应助Djnsbj采纳,获得10
3分钟前
Ava应助Djnsbj采纳,获得10
3分钟前
脑洞疼应助sk4ajd采纳,获得30
3分钟前
4分钟前
sk4ajd发布了新的文献求助30
4分钟前
爆米花应助sk4ajd采纳,获得30
4分钟前
4分钟前
疯狂的白昼完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155648
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214