Deep learning networks for real-time regional domestic waste detection

分类 目标检测 计算机科学 过程(计算) 自动化 对象(语法) 深度学习 多样性(控制论) 人工智能 工程类 模式识别(心理学) 机械工程 操作系统 程序设计语言
作者
Wei-Lung Mao,Wei-Chun Chen,Haris Imam Karim Fathurrahman,Yu-Hao Lin
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:344: 131096-131096 被引量:8
标识
DOI:10.1016/j.jclepro.2022.131096
摘要

Waste sorting is highly labor intensive because the wide variety of waste items prohibits automation. More recently, deep learning (DL) and computer vision technology has presented an opportunity to streamline the sorting process, but many important developmental steps remain. If computer vision technology can increase the efficiency of automated waste sorting, this would be beneficial for society and the environment. Accordingly, this study used the You Only Look Once-v3 (Yolo-v3) detection model based on DL to enhance recognition performance of household waste products. TrashNet, a commonly used waste image database, was used to train an initial Yolo-v3 model, however each image used for training only had a single waste object, and this study found that the detection model trained with a single object dataset was not only unsuitable for sorting multiple waste objects, but that this has rarely been addressed in academic literature. It was also discovered that nations and regions will need to develop their own unique databases that reflect the types of waste products found. Samples images need to account for the various appearances and colors and be combined in multiple waste object images when training the system. This paper documents the training and testing of an object detection model suitable for detecting domestic waste specific to Taiwan; however, the approach taken would be of use to other countries seeking to automate waste sorting. To achieve this, it was necessary to compile the Taiwan Recycled Waste Database (TRWD). This was then used to train the Yolo-v3, and the efficiencies of this, versus the standard TrashNet model were compared. Results showed that the TRWD-trained Yolo-v3 achieved mAP @0.5 of 92.12% and could detect waste in real-time. Relative to the TrashNet-trained Yolo-v3, the TRWD counterpart performed better due to the multiple waste objects and more relevant image repository. Further studies are recommended to investigate the effect of combining additional sensors that would enable improved detection of specific wastes. Combining the TRWD-trained Yolo-v3 with a robot system for waste sorting would potentially be another rewarding avenue of research. • Automatic waste detection improves waste recycling efficiency. • Different nations require customized datasets to train Yolo-v3 detection model. • Taiwan recycled waste dataset (TRWD) was expanded to improve detection rates. • Yolo-v3 trained on the TRWD outperformed the same system using TrashNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
科目三应助精明的涵雁采纳,获得10
2秒前
混子王发布了新的文献求助10
2秒前
Vann发布了新的文献求助10
3秒前
11111完成签到,获得积分10
3秒前
mukkee完成签到,获得积分20
4秒前
脑洞疼应助ss采纳,获得10
5秒前
幸福大白发布了新的文献求助10
6秒前
机会啊发布了新的文献求助10
6秒前
铫铫铫发布了新的文献求助10
6秒前
英俊的铭应助杨_采纳,获得10
7秒前
mukkee发布了新的文献求助10
7秒前
7秒前
混子王完成签到,获得积分10
8秒前
巫剑完成签到,获得积分10
8秒前
11秒前
充电宝应助海王星采纳,获得10
12秒前
12秒前
深情安青应助不周采纳,获得10
13秒前
11111发布了新的文献求助10
13秒前
13秒前
15秒前
充电宝应助机会啊采纳,获得10
15秒前
深情安青应助机会啊采纳,获得20
15秒前
子车茗应助还单身的尔蓝采纳,获得30
15秒前
16秒前
17秒前
17秒前
silence发布了新的文献求助10
18秒前
fdpb发布了新的文献求助10
18秒前
张丹兰完成签到,获得积分10
18秒前
18秒前
许松完成签到,获得积分10
19秒前
白头蝰发布了新的文献求助10
19秒前
20秒前
暴躁的沂完成签到,获得积分10
20秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271052
求助须知:如何正确求助?哪些是违规求助? 2910312
关于积分的说明 8353561
捐赠科研通 2580836
什么是DOI,文献DOI怎么找? 1403749
科研通“疑难数据库(出版商)”最低求助积分说明 655921
邀请新用户注册赠送积分活动 635337