Deep learning networks for real-time regional domestic waste detection

分类 目标检测 计算机科学 过程(计算) 自动化 对象(语法) 深度学习 多样性(控制论) 人工智能 工程类 模式识别(心理学) 机械工程 操作系统 程序设计语言
作者
Wei-Lung Mao,Wei-Chun Chen,Haris Imam Karim Fathurrahman,Yu-Hao Lin
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:344: 131096-131096 被引量:8
标识
DOI:10.1016/j.jclepro.2022.131096
摘要

Waste sorting is highly labor intensive because the wide variety of waste items prohibits automation. More recently, deep learning (DL) and computer vision technology has presented an opportunity to streamline the sorting process, but many important developmental steps remain. If computer vision technology can increase the efficiency of automated waste sorting, this would be beneficial for society and the environment. Accordingly, this study used the You Only Look Once-v3 (Yolo-v3) detection model based on DL to enhance recognition performance of household waste products. TrashNet, a commonly used waste image database, was used to train an initial Yolo-v3 model, however each image used for training only had a single waste object, and this study found that the detection model trained with a single object dataset was not only unsuitable for sorting multiple waste objects, but that this has rarely been addressed in academic literature. It was also discovered that nations and regions will need to develop their own unique databases that reflect the types of waste products found. Samples images need to account for the various appearances and colors and be combined in multiple waste object images when training the system. This paper documents the training and testing of an object detection model suitable for detecting domestic waste specific to Taiwan; however, the approach taken would be of use to other countries seeking to automate waste sorting. To achieve this, it was necessary to compile the Taiwan Recycled Waste Database (TRWD). This was then used to train the Yolo-v3, and the efficiencies of this, versus the standard TrashNet model were compared. Results showed that the TRWD-trained Yolo-v3 achieved mAP @0.5 of 92.12% and could detect waste in real-time. Relative to the TrashNet-trained Yolo-v3, the TRWD counterpart performed better due to the multiple waste objects and more relevant image repository. Further studies are recommended to investigate the effect of combining additional sensors that would enable improved detection of specific wastes. Combining the TRWD-trained Yolo-v3 with a robot system for waste sorting would potentially be another rewarding avenue of research. • Automatic waste detection improves waste recycling efficiency. • Different nations require customized datasets to train Yolo-v3 detection model. • Taiwan recycled waste dataset (TRWD) was expanded to improve detection rates. • Yolo-v3 trained on the TRWD outperformed the same system using TrashNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZzrWKZ完成签到 ,获得积分10
6秒前
淡然的芷荷完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
musicyy222完成签到,获得积分10
12秒前
追寻猫咪完成签到 ,获得积分10
13秒前
CGFHEMAN完成签到 ,获得积分10
19秒前
谢陈完成签到 ,获得积分10
20秒前
笨鸟先飞完成签到 ,获得积分10
21秒前
小羊咩完成签到 ,获得积分0
21秒前
S.S.N完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助150
25秒前
心灵美的不斜完成签到 ,获得积分10
26秒前
yellowonion完成签到 ,获得积分10
28秒前
领导范儿应助zwt采纳,获得10
29秒前
35秒前
zhangguo完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
典雅三颜完成签到 ,获得积分10
40秒前
liaomr完成签到 ,获得积分10
42秒前
浮游应助Sharif318采纳,获得10
44秒前
量子星尘发布了新的文献求助150
47秒前
狂魔春笋完成签到,获得积分20
49秒前
薏仁完成签到 ,获得积分10
54秒前
manmanzhong完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
SS完成签到,获得积分0
1分钟前
herpes完成签到 ,获得积分0
1分钟前
CQ完成签到 ,获得积分10
1分钟前
湖以完成签到 ,获得积分10
1分钟前
申燕婷完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
旅人完成签到 ,获得积分10
1分钟前
lql完成签到 ,获得积分10
1分钟前
1分钟前
恋恋青葡萄完成签到,获得积分10
1分钟前
fyy完成签到 ,获得积分10
1分钟前
limy发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079419
求助须知:如何正确求助?哪些是违规求助? 4297689
关于积分的说明 13388578
捐赠科研通 4120807
什么是DOI,文献DOI怎么找? 2256810
邀请新用户注册赠送积分活动 1261114
关于科研通互助平台的介绍 1195101