Dye Pollutant Removal from Synthetic Wastewater: A New Modeling and Predicting Approach Based on Experimental Data Analysis, Kriging Interpolation Method, and Computational Intelligence Techniques

支持向量机 克里金 均方误差 数据挖掘 人工神经网络 随机森林 计算机科学 算法 插值(计算机图形学) 数学 人工智能 机器学习 统计 运动(物理)
作者
M. Valikhan Anaraki,F. Mahmoudian,F. Nabizadeh Chianeh,S. Farzin
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:3
标识
DOI:10.3808/jei.202200473
摘要

In the present study, a new approach by coupling the interpolation method with computation-based technique (data-mining algorithms and an optimization algorithm) is introduced for modeling and optimization removal of Reactive Orange 7 (RO7) dye removal from synthetic wastewater. To this end, four significant factors like pH, electrolyte concentration, current density, and electrolysis time are considered as input variables. Thus, modeling of RO7 removal is implemented using eight data mining algorithms including multi- variate linear regression (MLR), ridge regression (RR), multivariate nonlinear regression (MNLR), artificial neural network (ANN), classification and regression tree (CART), k nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). These al- gorithms require a large data set for creating reliable results. However, creating a large number of experimental data request consuming high cost and time. Hence, the interpolation methods of kriging (KRG) and inverse distance weight (IDW) are applied for generating more data, whereas KRG has more accuracy than IDW by increasing the 47.080, 36.914, and 1.77% in MAE, RMSE, and R values, res- pectively. Then, the data mining algorithms are used for modeling the decolorization efficiency (DE) based on the original data and new data from KRG. It is found that using new data leads to significantly increasing accuracy (94.47, 96.43, 1.52, and 2.77% for MAE, RMSE, R and R2, respectively) of DE modeling. Also, SVM has demonstrated the highest accuracy out of all data mining algorithms (by in- creasing the 97.13, 98.30, and 14.42% in MAE, RMSE, and R2 values, respectively). Another challenge in the removal of RO7 from synthetic wastewater is predicting the maximum removal amount and optimal input variables. For this purpose, the hybrid of SVM and whale optimization algorithm (WOA) is employed. Finally, SVM-WOA has predicted the maximum of DE (91%) by optimal values of 4.2, 1.5 g/L, 4.2 mA/cm2, and 18 min for pH, C, I, and Time, respectively. In light of the high performance of the introduced approach for modeling removal process and predicting optimal conditions of removal process, this approach can be suggested for the removal of other pollutants from wastewater when the number of experimental data set is limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助木雷采纳,获得10
刚刚
刚刚
刚刚
2秒前
橙子发布了新的文献求助10
3秒前
NianAnYu发布了新的文献求助10
4秒前
潇潇微雨发布了新的文献求助10
5秒前
春暖花开完成签到,获得积分10
6秒前
李瑞瑞完成签到 ,获得积分10
9秒前
dys发布了新的文献求助10
9秒前
一一应助犹豫花卷采纳,获得50
11秒前
华仔应助王红玉采纳,获得10
12秒前
SciGPT应助闾丘惜萱采纳,获得10
12秒前
13秒前
15秒前
好好学习完成签到,获得积分10
16秒前
NianAnYu完成签到,获得积分10
16秒前
JAMA兜里揣发布了新的文献求助150
19秒前
悦耳亦云完成签到 ,获得积分10
20秒前
俭朴的雅彤完成签到,获得积分10
20秒前
20秒前
21秒前
LIANG完成签到,获得积分10
22秒前
23秒前
人壬发布了新的文献求助10
26秒前
闾丘惜萱发布了新的文献求助10
26秒前
醉山茶完成签到,获得积分10
27秒前
王红玉发布了新的文献求助10
27秒前
rstorz应助落后乐萱采纳,获得10
32秒前
NexusExplorer应助22采纳,获得10
33秒前
老王同学完成签到,获得积分10
33秒前
虚拟的秋寒完成签到,获得积分10
34秒前
JAMA兜里揣完成签到,获得积分10
36秒前
37秒前
科研通AI5应助壮观问寒采纳,获得10
37秒前
38秒前
ckzsj完成签到,获得积分10
38秒前
Jasper应助cc采纳,获得10
39秒前
善学以致用应助levicho采纳,获得10
39秒前
方渊思发布了新的文献求助10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3536243
求助须知:如何正确求助?哪些是违规求助? 3114467
关于积分的说明 9316530
捐赠科研通 2812412
什么是DOI,文献DOI怎么找? 1545039
邀请新用户注册赠送积分活动 719743
科研通“疑难数据库(出版商)”最低求助积分说明 711531