Disentangled High Quality Salient Object Detection

计算机科学 人工智能 任务(项目管理) 突出 像素 过程(计算) 计算机视觉 分辨率(逻辑) 对象(语法) 模式识别(心理学) 质量(理念) 目标检测 哲学 管理 认识论 经济 操作系统
作者
Lv Tang Bo Li,Yijie Zhong,Shouhong Ding,Mofei Song
标识
DOI:10.1109/iccv48922.2021.00356
摘要

Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD methods are facing new challenges. The major limitation of previous methods is that they try to identify the salient regions and estimate the accurate objects boundaries simultaneously with a single regression task at low-resolution. This practice ignores the inherent difference between the two difficult problems, resulting in poor detection quality. In this paper, we propose a novel deep learning framework for high-resolution SOD task, which disentangles the task into a low-resolution saliency classification network (LRSCN) and a high-resolution refinement network (HRRN). As a pixel-wise classification task, LRSCN is designed to capture sufficient semantics at low-resolution to identify the definite salient, background and uncertain image regions. HRRN is a regression task, which aims at accurately refining the saliency value of pixels in the uncertain region to preserve a clear object boundary at high-resolution with limited GPU memory. It is worth noting that by introducing uncertainty into the training process, our HRRN can well address the high-resolution refinement task without using any high-resolution training data. Extensive experiments on high-resolution saliency datasets as well as some widely used saliency benchmarks show that the proposed method achieves superior performance compared to the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xushanqi完成签到,获得积分10
1秒前
乔杰发布了新的文献求助10
1秒前
ypppp完成签到,获得积分10
2秒前
2秒前
杨小豆发布了新的文献求助10
3秒前
顾子墨发布了新的文献求助10
3秒前
3秒前
彭于晏应助勤恳的绿凝采纳,获得10
3秒前
大模型应助yir采纳,获得30
3秒前
无极微光应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
激狂大地万里冰完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
李健应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
耿耿完成签到,获得积分10
6秒前
大模型应助苗条的依珊采纳,获得10
6秒前
彭于晏应助ypppp采纳,获得10
6秒前
呆萌的灵波完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
在水一方应助小船采纳,获得10
8秒前
快乐的奶豆完成签到 ,获得积分10
9秒前
9秒前
Hilda007发布了新的文献求助200
9秒前
ypppp发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604