A weakly-supervised approach for flower/fruit counting in apple orchards

果园 园艺 计算机科学 数学 生物
作者
Uddhav Bhattarai,Manoj Karkee
出处
期刊:Computers in Industry [Elsevier]
卷期号:138: 103635-103635 被引量:34
标识
DOI:10.1016/j.compind.2022.103635
摘要

• A weakly-supervised regression-based deep learning algorithm. • Simplified approach for apple flowers and fruits counting without precise detection and segmentation. • Implementation of visualization techniques to investigate activated regions and features contributing to the count. • Evaluation on datasets acquired from unstructured commercial orchard environment. Flower and fruit count is a critical metric in developing crop-load management and harvesting strategies during flower/fruit development and harvest seasons. Growers currently rely on their prior experience and/or manual count in sample areas/trees to estimate the number of flowers/fruits in orchards. In this work, we propose a simplified yet robust deep learning-based weakly-supervised flower/fruit Counting Network (CountNet) and investigate its accuracy in commercial orchard images. Unlike detection-based counting methods, which require individual object detection, CountNet learns from image-level annotation with the number of objects (flowers or fruits) as input without explicitly specifying the object’s signature and location. Experiments were conducted in images acquired in an unstructured commercial orchard environment. Results showed a minimum Mean Absolute Error (MAE)/Root Mean Square Error (RMSE) of 12.0/18.4 and 2.9/4.3 for the apple flower and fruit dataset respectively. Activated region/feature visualization techniques revealed that CountNet is looking into different apple flower/fruit edges and features to make the count decisions. The results are promising in simplifying the automated methods for flower/fruit counting which can lead to reduced manual counting in the field, manual image annotation, and computational complexity and memory requirement of the object counting system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tomice完成签到,获得积分10
刚刚
lane发布了新的文献求助10
1秒前
无奈的若发布了新的文献求助10
2秒前
苏州河完成签到 ,获得积分10
2秒前
Tomice发布了新的文献求助10
2秒前
伟航完成签到,获得积分10
2秒前
3秒前
华仔应助thirteen采纳,获得10
4秒前
4秒前
5秒前
爆米花应助清秀的惜萱采纳,获得10
6秒前
维恰应助zzt采纳,获得10
6秒前
6秒前
氢原子完成签到 ,获得积分10
6秒前
糕手糕手糕糕手应助liyi采纳,获得20
9秒前
9秒前
韩星发布了新的文献求助10
10秒前
研友_VZG7GZ应助科研小白董采纳,获得30
13秒前
15秒前
gkhsdvkb完成签到 ,获得积分10
15秒前
17秒前
猕猴桃发布了新的文献求助10
18秒前
20秒前
科研通AI2S应助lane采纳,获得10
20秒前
思源应助jiujiuhuang采纳,获得10
20秒前
胡乱说兔的熊完成签到,获得积分10
20秒前
21秒前
薇薇完成签到,获得积分10
21秒前
李健应助大胖采纳,获得10
22秒前
24秒前
24秒前
风趣绮烟完成签到,获得积分10
25秒前
25秒前
lance发布了新的文献求助10
26秒前
27秒前
nil完成签到,获得积分10
28秒前
汉堡包应助flysky120采纳,获得30
29秒前
菠萝菠萝哒给嘒彼小星的求助进行了留言
29秒前
blind发布了新的文献求助10
29秒前
lmy发布了新的文献求助50
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313996
求助须知:如何正确求助?哪些是违规求助? 2946386
关于积分的说明 8529843
捐赠科研通 2622024
什么是DOI,文献DOI怎么找? 1434296
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792