Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock

自动停靠 码头 对接(动物) 化学 氢键 结合位点 立体化学 组合化学 生物化学 有机化学 分子 生物信息学 医学 基因 护理部
作者
Qiao Xue,Liu Xian,Paul Russell,Jin Li,Wenxiao Pan,Jianjie Fu,Aiqian Zhang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:233: 113323-113323 被引量:128
标识
DOI:10.1016/j.ecoenv.2022.113323
摘要

Molecular docking is a widely used method to predict the binding modes of small-molecule ligands to the target binding site. However, it remains a challenge to identify the correct binding conformation and the corresponding binding affinity for a series of structurally similar ligands, especially those with weak binding. An understanding of the various relative attributes of popular docking programs is required to ensure a successful docking outcome. In this study, we systematically compared the performance of three popular docking programs, Autodock, Autodock Vina, and Surflex-Dock for a series of structurally similar weekly binding flavonoids (22) binding to the estrogen receptor alpha (ERα). For these flavonoids-ERα interactions, Surflex-Dock showed higher accuracy than Autodock and Autodock Vina. The hydrogen bond overweighting by Autodock and Autodock Vina led to incorrect binding results, while Surflex-Dock effectively balanced both hydrogen bond and hydrophobic interactions. Moreover, the selection of initial receptor structure is critical as it influences the docking conformations of flavonoids-ERα complexes. The flexible docking method failed to further improve the docking accuracy of the semi-flexible docking method for such chemicals. In addition, binding interaction analysis revealed that 8 residues, including Ala350, Glu353, Leu387, Arg394, Phe404, Gly521, His524, and Leu525, are the key residues in ERα-flavonoids complexes. This work provides reference for assessing molecular interactions between ERα and flavonoid-like chemicals and provides instructive information for other environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingwen完成签到,获得积分10
1秒前
Lucas应助挽风采纳,获得10
1秒前
LEOhard完成签到,获得积分10
2秒前
Owen应助嘻嘻采纳,获得10
2秒前
田様应助排骨大王采纳,获得50
3秒前
3秒前
4秒前
krajicek完成签到,获得积分10
4秒前
卢鑫宇发布了新的文献求助10
6秒前
jonghuang发布了新的文献求助10
7秒前
7秒前
yuhong完成签到,获得积分10
8秒前
8秒前
9秒前
笨笨摇伽完成签到,获得积分10
11秒前
11秒前
猫小乐C完成签到,获得积分10
11秒前
核桃应助qdd采纳,获得10
11秒前
这就去学习完成签到 ,获得积分10
12秒前
13秒前
阔达岂愈发布了新的文献求助10
13秒前
等的你呢完成签到 ,获得积分10
14秒前
未来可期发布了新的文献求助10
14秒前
自由的梦露完成签到,获得积分10
15秒前
yuhong发布了新的文献求助10
16秒前
jonghuang完成签到,获得积分10
16秒前
16秒前
16秒前
卢鑫宇完成签到,获得积分20
16秒前
16秒前
18秒前
18秒前
穆尘发布了新的文献求助10
19秒前
嘻嘻发布了新的文献求助10
20秒前
afsdfds发布了新的文献求助10
20秒前
Owen应助俭朴的大有采纳,获得10
20秒前
21秒前
心心完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963