Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock

自动停靠 码头 对接(动物) 化学 氢键 结合位点 立体化学 组合化学 生物化学 有机化学 分子 生物信息学 医学 基因 护理部
作者
Qiao Xue,Liu Xian,Paul Russell,Jin Li,Wenxiao Pan,Jianjie Fu,Aiqian Zhang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:233: 113323-113323 被引量:40
标识
DOI:10.1016/j.ecoenv.2022.113323
摘要

Molecular docking is a widely used method to predict the binding modes of small-molecule ligands to the target binding site. However, it remains a challenge to identify the correct binding conformation and the corresponding binding affinity for a series of structurally similar ligands, especially those with weak binding. An understanding of the various relative attributes of popular docking programs is required to ensure a successful docking outcome. In this study, we systematically compared the performance of three popular docking programs, Autodock, Autodock Vina, and Surflex-Dock for a series of structurally similar weekly binding flavonoids (22) binding to the estrogen receptor alpha (ERα). For these flavonoids-ERα interactions, Surflex-Dock showed higher accuracy than Autodock and Autodock Vina. The hydrogen bond overweighting by Autodock and Autodock Vina led to incorrect binding results, while Surflex-Dock effectively balanced both hydrogen bond and hydrophobic interactions. Moreover, the selection of initial receptor structure is critical as it influences the docking conformations of flavonoids-ERα complexes. The flexible docking method failed to further improve the docking accuracy of the semi-flexible docking method for such chemicals. In addition, binding interaction analysis revealed that 8 residues, including Ala350, Glu353, Leu387, Arg394, Phe404, Gly521, His524, and Leu525, are the key residues in ERα-flavonoids complexes. This work provides reference for assessing molecular interactions between ERα and flavonoid-like chemicals and provides instructive information for other environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222发布了新的文献求助10
刚刚
2秒前
3秒前
优秀灵竹发布了新的文献求助10
4秒前
yangjoy完成签到 ,获得积分10
5秒前
慕斯发布了新的文献求助10
5秒前
科目三应助嘟嘟嘟嘟采纳,获得10
5秒前
5秒前
sandra完成签到 ,获得积分10
7秒前
柔弱毒娘完成签到,获得积分10
7秒前
8秒前
李富贵儿~完成签到,获得积分10
8秒前
dsd完成签到,获得积分20
9秒前
脑洞疼应助鲜于夜白采纳,获得10
9秒前
11秒前
11秒前
11秒前
12秒前
Akim应助苍玉华采纳,获得10
13秒前
迷路的千万完成签到 ,获得积分10
14秒前
科目三应助坚强的严青采纳,获得10
14秒前
Akim应助坚强的严青采纳,获得10
14秒前
大个应助mmol采纳,获得150
15秒前
cao完成签到,获得积分10
16秒前
米粒发布了新的文献求助10
17秒前
朝茗森完成签到,获得积分10
18秒前
小小怪发布了新的文献求助20
18秒前
迷路的千万关注了科研通微信公众号
18秒前
稳稳的幸福完成签到 ,获得积分20
19秒前
19秒前
222完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
23秒前
23秒前
dsd发布了新的文献求助10
23秒前
23秒前
25秒前
DOUDOU发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133289
求助须知:如何正确求助?哪些是违规求助? 2784437
关于积分的说明 7766618
捐赠科研通 2439625
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624808
版权声明 600771