A GAN-Based Short-Term Link Traffic Prediction Approach for Urban Road Networks Under a Parallel Learning Framework

计算机科学 交通生成模型 判别式 深度学习 循环神经网络 块(置换群论) 可扩展性 卷积神经网络 人工智能 生成模型 人工神经网络 机器学习 生成语法 实时计算 几何学 数据库 数学
作者
Junchen Jin,Dingding Rong,Tong Zhang,Qingyuan Ji,Haifeng Guo,Yisheng Lv,Xiaoliang Ma,Fei‐Yue Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16185-16196 被引量:31
标识
DOI:10.1109/tits.2022.3148358
摘要

Road link speed is often employed as an essential measure of traffic state in the operation of an urban traffic network. Not only real-time traffic demand but also signal timings and other local planning factors are major influential factors. This paper proposes a short-term traffic speed prediction approach, called PL-WGAN, for urban road networks, which is considered an important part of a novel parallel learning framework for traffic control and operation. The proposed method applies Wasserstein Generative Adversarial Nets (WGAN) for robust data-driven traffic modeling using a combination of generative neural network and discriminative neural network. The generative neural network models the road link features of the adjacent intersections and the control parameters of intersections using a hybrid graph block. In addition, the spatial-temporal relations are captured by stacking a graph convolutional network (GCN), a recurrent neural network (RNN), and an attention mechanism. A comprehensive computational experiment was carried out including comparing model prediction and computational performances with several state-of-the-art deep learning models. The proposed approach has been implemented and applied for predicting short-term link traffic speed in a large-scale urban road network in Hangzhou, China. The results suggest that it provides a scalable and effective traffic prediction solution for urban road networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略爱完成签到 ,获得积分10
1秒前
chapai完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
踏雪寻梅举报Xppcjlan求助涉嫌违规
3秒前
可爱的函函应助莹66采纳,获得20
3秒前
ALITTLE发布了新的文献求助80
4秒前
田様应助朴实夏旋采纳,获得10
5秒前
5秒前
summer完成签到,获得积分20
6秒前
6秒前
blue发布了新的文献求助10
6秒前
学术霸王完成签到 ,获得积分10
6秒前
潘善若发布了新的文献求助10
7秒前
gbw123发布了新的文献求助10
8秒前
李圳铭发布了新的文献求助10
8秒前
传奇3应助shen采纳,获得10
9秒前
lumangxiaozi发布了新的文献求助10
9秒前
9秒前
10秒前
爱笑烤鸡发布了新的文献求助10
11秒前
11秒前
13秒前
科研通AI2S应助高高建辉采纳,获得10
14秒前
、、完成签到,获得积分20
15秒前
CodeCraft应助莹66采纳,获得20
15秒前
15秒前
halcyon完成签到,获得积分10
16秒前
16秒前
16秒前
duanhuiyuan应助聪慧小燕采纳,获得10
16秒前
16秒前
Jyy77完成签到 ,获得积分10
17秒前
ccc完成签到 ,获得积分10
18秒前
刘丰完成签到 ,获得积分10
20秒前
20秒前
打打应助hehehehe采纳,获得10
20秒前
wgl发布了新的文献求助10
22秒前
LIUJIE完成签到,获得积分10
22秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434140
求助须知:如何正确求助?哪些是违规求助? 3031366
关于积分的说明 8941708
捐赠科研通 2719312
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689455
邀请新用户注册赠送积分活动 685580