点云
计算机科学
特征(语言学)
保险丝(电气)
人工智能
点(几何)
云计算
图像配准
旋转(数学)
无人地面车辆
翻译(生物学)
遥感
计算机视觉
地理
数学
图像(数学)
工程类
基因
信使核糖核酸
操作系统
电气工程
哲学
生物化学
语言学
化学
几何学
作者
Man Zhang,Yi Yang,Junbo Wang,Linzhe Shi,Yufeng Yue,Mengyin Fu
标识
DOI:10.1109/icus52573.2021.9641378
摘要
Due to different perspectives, there are significant discrepancies between air-ground point cloud maps in density and blind area, which is a huge challenge for map registration of air-ground collaborative unmanned system. To solve these problems, we design a point cloud map registration framework based on feature error between maps. Firstly, we extract and fuse the features of point cloud maps from aerial and ground. Then the feature error between fusion features and air features is calculated and the optimal registration from ground-map to air-map is estimated by minimizing feature error. Finally, experimental report the accuracy under the initial rotation error of 80 degrees and random translation.
科研通智能强力驱动
Strongly Powered by AbleSci AI