Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis

光学相干层析成像 医学 青光眼 眼底(子宫) 眼科 视网膜 荟萃分析 人工智能 内科学 计算机科学
作者
Jo‐Hsuan Wu,Takashi Nishida,Robert N. Weinreb,Jou‐Wei Lin
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:237: 1-12 被引量:33
标识
DOI:10.1016/j.ajo.2021.12.008
摘要

To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
刚刚
MADKAI发布了新的文献求助10
刚刚
xunxunmimi完成签到,获得积分10
1秒前
1秒前
1秒前
刘星星发布了新的文献求助10
2秒前
CodeCraft应助科研菜鸟采纳,获得20
2秒前
zyyyyyyyyyyy完成签到,获得积分10
3秒前
4秒前
研友_8yN60L发布了新的文献求助30
4秒前
打打应助柳七采纳,获得10
5秒前
零零二完成签到 ,获得积分10
5秒前
韭菜盒子发布了新的文献求助10
6秒前
Maestro_S完成签到,获得积分0
6秒前
volzzz发布了新的文献求助10
6秒前
wgglegg完成签到,获得积分10
6秒前
科研通AI5应助小胖鱼采纳,获得10
6秒前
酷波er应助黄超采纳,获得10
6秒前
6秒前
大智若愚啊完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
彬彬发布了新的文献求助10
7秒前
健壮丹妗完成签到 ,获得积分10
7秒前
Orange应助铸一字错采纳,获得10
7秒前
7秒前
Accept应助阿烨采纳,获得10
9秒前
欧阳小枫发布了新的文献求助10
10秒前
11秒前
Heidi完成签到 ,获得积分10
11秒前
见雨鱼发布了新的文献求助10
11秒前
学术扛把子完成签到 ,获得积分10
11秒前
Lucas应助陈某某采纳,获得10
11秒前
尊敬的钥匙完成签到,获得积分10
12秒前
13秒前
13秒前
赘婿应助无情的白桃采纳,获得10
13秒前
习习应助zhu96114748采纳,获得10
14秒前
英姑应助韭菜盒子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740