Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis

光学相干层析成像 医学 青光眼 眼底(子宫) 眼科 视网膜 荟萃分析 人工智能 内科学 计算机科学
作者
Jo‐Hsuan Wu,Takashi Nishida,Robert N. Weinreb,Jou‐Wei Lin
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:237: 1-12 被引量:39
标识
DOI:10.1016/j.ajo.2021.12.008
摘要

To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的俊驰应助Jing采纳,获得10
1秒前
咸鱼发布了新的文献求助20
1秒前
1秒前
1秒前
爆米花应助Jane采纳,获得10
1秒前
甘蔗发布了新的文献求助30
1秒前
1秒前
淡然谷秋完成签到 ,获得积分10
2秒前
上官若男应助柒月樊霜采纳,获得10
2秒前
木头人呐完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
诚心中恶发布了新的文献求助10
4秒前
背书强完成签到 ,获得积分10
4秒前
4秒前
Jack123完成签到,获得积分10
5秒前
SciGPT应助认真的缘郡采纳,获得10
5秒前
5秒前
大模型应助乖猫要努力采纳,获得10
5秒前
6秒前
6秒前
哒哒发布了新的文献求助10
6秒前
6秒前
6秒前
眼睛大又蓝完成签到,获得积分10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
shihuishui完成签到,获得积分10
7秒前
田様应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
zll发布了新的文献求助10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826