Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis

光学相干层析成像 医学 青光眼 眼底(子宫) 眼科 视网膜 荟萃分析 人工智能 内科学 计算机科学
作者
Jo‐Hsuan Wu,Takashi Nishida,Robert N. Weinreb,Jou‐Wei Lin
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:237: 1-12 被引量:32
标识
DOI:10.1016/j.ajo.2021.12.008
摘要

To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖易云完成签到,获得积分10
1秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
2秒前
憨憨发布了新的文献求助10
3秒前
zZ关闭了zZ文献求助
4秒前
深情安青应助酷炫觅松采纳,获得10
5秒前
大模型应助踏实的松思采纳,获得10
5秒前
7秒前
kk完成签到,获得积分10
7秒前
8秒前
8秒前
成1完成签到,获得积分10
9秒前
9秒前
Tian&完成签到 ,获得积分10
10秒前
弥淮发布了新的文献求助10
11秒前
领导范儿应助zai采纳,获得10
11秒前
薇薇发布了新的文献求助20
11秒前
情怀应助十二采纳,获得10
12秒前
酷波er应助okjiujiu采纳,获得10
12秒前
14秒前
科目三应助A灰机采纳,获得10
14秒前
15秒前
姜子骞完成签到,获得积分10
16秒前
发财的Mei完成签到 ,获得积分10
16秒前
jiajia完成签到,获得积分10
17秒前
17秒前
18秒前
jiajia发布了新的文献求助10
19秒前
姜子骞发布了新的文献求助10
19秒前
小罗完成签到 ,获得积分10
20秒前
wfy1227完成签到,获得积分10
20秒前
Acane完成签到,获得积分10
22秒前
杳鸢应助oikage采纳,获得10
23秒前
酷炫觅松发布了新的文献求助10
24秒前
小二郎应助锌银12306采纳,获得10
25秒前
27秒前
可爱的函函应助黎长江采纳,获得10
29秒前
晨曦发布了新的文献求助10
29秒前
勤奋的张发布了新的文献求助20
31秒前
张宝完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161232
求助须知:如何正确求助?哪些是违规求助? 2812684
关于积分的说明 7895969
捐赠科研通 2471492
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112