Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis

光学相干层析成像 医学 青光眼 眼底(子宫) 眼科 视网膜 荟萃分析 人工智能 内科学 计算机科学
作者
Jo‐Hsuan Wu,Takashi Nishida,Robert N. Weinreb,Jou‐Wei Lin
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:237: 1-12 被引量:39
标识
DOI:10.1016/j.ajo.2021.12.008
摘要

To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
却道天凉好个秋完成签到,获得积分20
刚刚
珺儿发布了新的文献求助10
1秒前
善学以致用应助ht采纳,获得10
2秒前
bkagyin应助跑在颖采纳,获得10
2秒前
2秒前
4秒前
4秒前
4秒前
cute完成签到,获得积分10
5秒前
阿楷发布了新的文献求助10
5秒前
6秒前
开朗芸完成签到,获得积分10
8秒前
追寻松完成签到,获得积分20
9秒前
fzzf发布了新的文献求助10
10秒前
开朗芸发布了新的文献求助10
10秒前
hdblk发布了新的文献求助10
12秒前
珺儿完成签到,获得积分10
12秒前
12秒前
yongnamhui发布了新的文献求助100
14秒前
15秒前
16秒前
烟花应助大力的迎松采纳,获得10
18秒前
zzz完成签到,获得积分10
19秒前
20秒前
GodZ发布了新的文献求助10
21秒前
小小鱼完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
糟糕的立辉完成签到,获得积分10
25秒前
沉静楷瑞完成签到,获得积分10
25秒前
26秒前
大力的迎松完成签到,获得积分20
27秒前
12发布了新的文献求助10
28秒前
BadBoy发布了新的文献求助10
28秒前
29秒前
29秒前
hdblk完成签到,获得积分10
30秒前
lxptsd完成签到,获得积分10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501