Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis

光学相干层析成像 医学 青光眼 眼底(子宫) 眼科 视网膜 荟萃分析 人工智能 内科学 计算机科学
作者
Jo‐Hsuan Wu,Takashi Nishida,Robert N. Weinreb,Jou‐Wei Lin
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:237: 1-12 被引量:39
标识
DOI:10.1016/j.ajo.2021.12.008
摘要

To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵的涛涛完成签到,获得积分10
刚刚
1秒前
知名不具完成签到 ,获得积分10
2秒前
学不懂完成签到,获得积分10
3秒前
大气的妙旋完成签到,获得积分10
3秒前
多情紫霜发布了新的文献求助30
4秒前
开放的玉米完成签到,获得积分10
5秒前
肥肥完成签到 ,获得积分10
6秒前
Lyw完成签到 ,获得积分10
6秒前
毛毛弟发布了新的文献求助10
6秒前
7秒前
小欧文完成签到,获得积分10
8秒前
1111111111应助kkkdachui采纳,获得10
9秒前
山山以川发布了新的文献求助10
9秒前
dagongren完成签到,获得积分10
9秒前
晓先森完成签到,获得积分10
11秒前
ny完成签到,获得积分10
12秒前
12秒前
juqiu发布了新的文献求助10
12秒前
彭于晏应助方方采纳,获得10
13秒前
科研通AI6应助多情紫霜采纳,获得10
13秒前
13秒前
14秒前
14秒前
所所应助雪花采纳,获得10
15秒前
Hello应助花花采纳,获得10
15秒前
cc完成签到,获得积分20
15秒前
16秒前
刘佳慧发布了新的文献求助10
16秒前
科研小陈完成签到,获得积分10
17秒前
pups发布了新的文献求助20
18秒前
JUNJUN发布了新的文献求助30
18秒前
麻辣炒年糕完成签到 ,获得积分10
18秒前
Lucas应助wang采纳,获得30
18秒前
18秒前
李健的小迷弟应助W昂采纳,获得10
20秒前
20秒前
酷波er应助cloud采纳,获得10
21秒前
缥缈的凝丹完成签到,获得积分10
21秒前
牛牛完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363