亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Sparrow Search Algorithm Based on Iterative Local Search

局部搜索(优化) 搜索算法 数学优化 水准点(测量) 算法 维数(图论) 计算机科学 边界(拓扑) 爬山 局部最优 引导式本地搜索 波束搜索 最佳优先搜索 数学 数学分析 大地测量学 纯数学 地理
作者
Shaoqiang Yan,Ping Yang,Donglin Zhu,Weiye Zheng,Fengxuan Wu
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2021: 1-31 被引量:35
标识
DOI:10.1155/2021/6860503
摘要

This paper solves the shortcomings of sparrow search algorithm in poor utilization to the current individual and lack of effective search, improves its search performance, achieves good results on 23 basic benchmark functions and CEC 2017, and effectively improves the problem that the algorithm falls into local optimal solution and has low search accuracy. This paper proposes an improved sparrow search algorithm based on iterative local search (ISSA). In the global search phase of the followers, the variable helix factor is introduced, which makes full use of the individual’s opposite solution about the origin, reduces the number of individuals beyond the boundary, and ensures the algorithm has a detailed and flexible search ability. In the local search phase of the followers, an improved iterative local search strategy is adopted to increase the search accuracy and prevent the omission of the optimal solution. By adding the dimension by dimension lens learning strategy to scouters, the search range is more flexible and helps jump out of the local optimal solution by changing the focusing ability of the lens and the dynamic boundary of each dimension. Finally, the boundary control is improved to effectively utilize the individuals beyond the boundary while retaining the randomness of the individuals. The ISSA is compared with PSO, SCA, GWO, WOA, MWOA, SSA, BSSA, CSSA, and LSSA on 23 basic functions to verify the optimization performance of the algorithm. In addition, in order to further verify the optimization performance of the algorithm when the optimal solution is not 0, the above algorithms are compared in CEC 2017 test function. The simulation results show that the ISSA has good universality. Finally, this paper applies ISSA to PID parameter tuning and robot path planning, and the results show that the algorithm has good practicability and effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安雯完成签到 ,获得积分10
4秒前
4秒前
骆其为清完成签到,获得积分10
6秒前
LEMON发布了新的文献求助10
8秒前
9秒前
hoy完成签到 ,获得积分10
10秒前
自然怀蕾发布了新的文献求助10
12秒前
阿幽发布了新的文献求助10
15秒前
伟大的鲁路皇完成签到,获得积分10
17秒前
梨炒栗子完成签到,获得积分10
21秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
25秒前
牧羊人发布了新的文献求助10
29秒前
null应助Pendulium采纳,获得10
35秒前
CNY完成签到 ,获得积分10
37秒前
39秒前
42秒前
量子星尘发布了新的文献求助10
51秒前
安静的从梦完成签到 ,获得积分10
53秒前
陈杰完成签到,获得积分10
59秒前
阿幽完成签到 ,获得积分10
1分钟前
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
科研通AI6应助字母采纳,获得10
1分钟前
CapQing应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
旺仔先生完成签到,获得积分0
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
MasterE完成签到,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MasterE发布了新的文献求助10
1分钟前
lyh完成签到,获得积分10
1分钟前
null应助Pendulium采纳,获得10
1分钟前
点点发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
乐乐应助牧羊人采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595648
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817947
捐赠科研通 4651117
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469743