Nomogram of Combining CT-Based Body Composition Analyses and Prognostic Inflammation Score: Prediction of Survival in Advanced Epithelial Ovarian Cancer Patients

列线图 医学 接收机工作特性 内科学 比例危险模型 肿瘤科 卵巢癌 泌尿科 癌症
作者
Xin Wang,Chao Zhang,Feng Cao,Chuan-bin Wang,Jiangning Dong,Zhen-huan Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (9): 1394-1403 被引量:11
标识
DOI:10.1016/j.acra.2021.11.011
摘要

To investigate the value of body composition changes measured by quantitative computer tomography (QCT) in evaluating the prognosis of advanced epithelial ovarian cancer (AEOC) patients who underwent primary debulking surgery (PDS) and adjuvant platinum-based chemotherapy, and constructed a nomogram model for predicting survival in combination with prognostic inflammation score (PIS).Fifty-seven patients with AEOC between 2012 and 2016 were retrospectively enrolled. Pre- and post-treatment CT images were used to analyze the body composition biomarkers. The subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), cross-sectional area of paraspinal skeletal muscle area (PMA), skeletal muscle density (SMD), body mineral density (BMD) were measured from two sets of CT images.In multivariate analyses, VFA gain, PMA loss, BMD loss, and PIS were independent risk factors of overall survival (OS) (HR = 3.7, 3.0, 2.8, 1.9, respectively, all p < 0.05). Receiver operating characteristic (ROC) curves showed that the prognostic model combining body composition changes (BCC) and PIS had the highest predictive performance (area under the curve = 0.890). The concordance index (C-index) of the prognostic nomogram was 0.779 (95% CI, 0.673-0.886). Decision curve analysis (DCA) demonstrated the prognostic nomogram had a great distinguishing performance.CT-based body composition analyses and PIS were associated with poor OS for AEOC patients who underwent PDS and adjuvant platinum-based chemotherapy. The prognostic nomogram with a combination of BCC and PIS was dependable in predicting survival for AEOC patients during treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangayting发布了新的文献求助10
刚刚
动听皮带发布了新的文献求助30
4秒前
所所应助Crane采纳,获得10
4秒前
没得完成签到 ,获得积分10
5秒前
桑桑完成签到,获得积分20
5秒前
打打应助归谷采纳,获得10
6秒前
7秒前
8秒前
NCL发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助柔之采纳,获得10
9秒前
10秒前
无花果应助DE2022采纳,获得10
10秒前
王算法发布了新的文献求助10
12秒前
12秒前
13秒前
锅包肉发布了新的文献求助10
14秒前
15秒前
16秒前
脆香可丽饼应助linn采纳,获得30
16秒前
hy完成签到,获得积分10
17秒前
wangayting发布了新的文献求助10
17秒前
Chaiyuan完成签到 ,获得积分10
18秒前
18秒前
zz发布了新的文献求助10
20秒前
吱吱组织杂质完成签到,获得积分10
22秒前
Q17完成签到 ,获得积分10
22秒前
24秒前
25秒前
25秒前
酷波er应助吱吱组织杂质采纳,获得10
26秒前
27秒前
28秒前
28秒前
完美世界应助机灵飞珍采纳,获得10
29秒前
帆320完成签到,获得积分10
29秒前
29秒前
义气珩完成签到,获得积分10
29秒前
Kevin完成签到,获得积分10
30秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237