卤化物
钙钛矿(结构)
化学物理
机制(生物学)
材料科学
无机化学
铅(地质)
离子
化学
矿物学
结晶学
地质学
地貌学
量子力学
物理
有机化学
摘要
Ion migration under light illumination or electric field could cause several complex phenomena, such as hysteresis, phase segregation, and interface passivation, in optoelectronic devices based on hybrid organic-inorganic perovskites. The high ionic conductivity of metal halide perovskites can be ascribed to the lower migration barrier of halide anions, which has been demonstrated to be inhibited by the large organic layer of two-dimensional perovskite structures. However, in all-inorganic two-dimensional perovskites, the diffusion mechanism of halide anions has not been comprehensively studied. Herein, we investigate the diffusion mechanism of halide anions in all-inorganic Ruddlesden-Popper (RP) halide perovskites by first-principles calculations. In these all-inorganic perovskites, the inorganic CsI layer can also prevent halide diffusion between the adjacent octahedral slabs via the vacancy-hopping mechanism. However, intercalation provides an additional diffusion channel for halide interstitials, which promote in-plane diffusion in RP perovskites. These results reveal the migration properties of halide vacancies and interstitials in all-inorganic RP perovskites, which would be beneficial for exploring their novel optoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI