阴极
原子层沉积
材料科学
电解质
化学工程
电化学
离子
物理气相沉积
分析化学(期刊)
纳米技术
薄膜
电极
物理化学
化学
有机化学
色谱法
工程类
作者
Arka Saha,Sarah Taragin,. Rosy,Sandipan Maiti,T. Kravchuk,Nicole Leifer,Maria Tkachev,Malachi Noked
出处
期刊:Small
[Wiley]
日期:2021-12-09
卷期号:18 (7)
被引量:10
标识
DOI:10.1002/smll.202104625
摘要
High-Ni-rich layered oxides [e.g., LiNix Coy Mnz O2 ; x > 0.5, x + y + z = 1] are considered one of the most promising cathodes for high-energy-density lithium-ion batteries (LIB). However, extreme electrode-electrolyte reactions, several interfacial issues, and structural instability restrict their practical applicability. Here, a shortened unconventional atomic surface reduction (ASR) technique is demonstrated on the cathode surface as a derivative of the conventional atomic layer deposition (ALD) process, which brings superior cell performances. The atomic surface reaction (reduction process) between diethyl-zinc (as a single precursor) and Ni-rich NMC cathode [LiNi0.8 Co0.1 Mn0.1 O2 ; NCM811] material is carried out using the ALD reactor at different temperatures. The temperature dependency of the process through advanced spectroscopy and microscopy studies is demonstrated and it is shown that thin surface film is formed at 100 °C, whereas at 200 °C a gradual atomic diffusion of Zn ions from the surface to the near-surface regions is taking place. This unique near-surface penetration of Zn ions significantly improves the electrochemical performance of the NCM811 cathode. This approach paves the way for utilizing vapor phase deposition processes to achieve both surface coatings and near-surface doping in a single reactor to stabilize high-energy cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI