AGQFL: Communication-efficient Federated Learning via Automatic Gradient Quantization in Edge Heterogeneous Systems

量化(信号处理) 计算机科学 边缘设备 通信系统 矢量量化 架空(工程) 数据压缩 计算机工程 算法 人工智能 实时计算 计算机网络 云计算 操作系统
作者
Zirui Lian,Jing Cao,Yanru Zuo,Weihong Liu,Zongwei Zhu
标识
DOI:10.1109/iccd53106.2021.00089
摘要

With the widespread use of artificial intelligent (AI) applications and dramatic growth in data volumes from edge devices, there are currently many works that place the training of AI models onto edge devices. The state-of-the-art edge training framework, federated learning (FL), requires to transfer of a large amount of data between edge devices and the central server, which causes heavy communication overhead. To alleviate the communication overhead, gradient compression techniques are widely used. However, the bandwidth of the edge devices is usually different, causing communication heterogeneity. Existing gradient compression techniques usually adopt a fixed compression rate and do not take the straggler problem caused by the communication heterogeneity into account. To address these issues, we propose AGQFL, an automatic gradient quantization method consisting of three modules: quantization indicator module, quantization strategy module and quantization optimizer module. The quantization indicator module automatically determines the adjustment direction of quantization precision by measuring the convergence ability of the current model. Following the indicator and the physical bandwidth of each node, the quantization strategy module adjusts the quantization precision at run-time. Furthermore, the quantization optimizer module designs a new optimizer to reduce the training bias and eliminate the instability during the training process. Experimental results show that AGQFL can greatly speed up the training process in edge AI systems while maintaining or even improving model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hwb关注了科研通微信公众号
刚刚
Zhangll完成签到,获得积分10
1秒前
orixero应助TYF采纳,获得10
1秒前
2秒前
开朗的忆梅完成签到,获得积分10
3秒前
3秒前
3秒前
JamesPei应助维妮妮采纳,获得10
4秒前
4秒前
机灵的友儿完成签到,获得积分10
5秒前
shine发布了新的文献求助10
6秒前
CharlesL完成签到,获得积分10
6秒前
hope发布了新的文献求助100
7秒前
Lin发布了新的文献求助10
7秒前
鸡蛋叉烧肠完成签到,获得积分10
8秒前
曲奇发布了新的文献求助30
8秒前
8秒前
张张张晴发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助qqzhang采纳,获得10
11秒前
香蕉元风发布了新的文献求助10
12秒前
追寻访曼完成签到 ,获得积分20
12秒前
第八维发布了新的文献求助10
14秒前
14秒前
尊敬寒松发布了新的文献求助10
15秒前
善学以致用应助气945采纳,获得10
15秒前
chen同学完成签到 ,获得积分10
16秒前
马荣完成签到,获得积分10
20秒前
hwb发布了新的文献求助10
20秒前
20秒前
shine完成签到,获得积分10
20秒前
Trevor2021发布了新的文献求助10
21秒前
鸣笛应助换乘点采纳,获得30
22秒前
24秒前
FashionBoy应助Erika采纳,获得10
24秒前
共享精神应助开朗的忆梅采纳,获得10
24秒前
24秒前
万能图书馆应助kingwill采纳,获得20
25秒前
25秒前
拼搏向上完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712