Ecotoxicological QSTR and QSTTR Modeling for the Prediction of Acute Oral Toxicity of Pesticides against Multiple Avian Species

杀虫剂 急性毒性 环境化学 毒性 生物 生态学 化学 有机化学
作者
Rajendra Kumar Mukherjee,Vinay Kumar,Kunal Roy
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (1): 335-348 被引量:41
标识
DOI:10.1021/acs.est.1c05732
摘要

The ever-increasing use of pesticides in response to the rising agricultural demand has threatened the existence of nontarget organisms like avian species, disrupting the global ecological integrity. Therefore, it is critical to protect and restore different endangered bird species from the perspective of ecosystem safety. In the present work, we have developed regression-based two-dimensional quantitative structure toxicity relationship (2D QSTR) and quantitative structure toxicity–toxicity relationship (QSTTR) models to estimate the toxicity of pesticides on five different avian species following the Organization for Economic Co-operation and Development (OECD) guidelines. Rigorous validation has been performed using different statistical internal and external validation parameters to ensure the robustness and interpretability of the developed models. From the developed models, it can be stated that the presence of electronegative and lipophilic features greatly enhance pesticide toxicity, whereas the hydrophilic characters are shown to have a detrimental impact on the toxicity of pesticides. Moreover, the developed QSTTR models have been employed to the in silico toxicity prediction of 124, 154, and 250 pesticides against bobwhite quail, ring-necked pheasant, and mallard duck species, respectively, extracted from the Office of Pesticides Program (OPP) Pesticide Ecotoxicity Database. The information obtained from the modeled descriptors might be used for pesticide risk assessment in the future, with the added benefit of providing an early caution of their possible negative impact on birds for regulatory purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
3秒前
开心夏旋完成签到,获得积分10
3秒前
嘞是举仔应助专注的草丛采纳,获得20
4秒前
好好好完成签到,获得积分10
4秒前
洁净如音完成签到,获得积分10
4秒前
wheeler1发布了新的文献求助10
4秒前
浮云发布了新的文献求助30
5秒前
5秒前
5秒前
Redamancy完成签到,获得积分10
6秒前
盒子完成签到,获得积分20
6秒前
开心夏旋发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
刘耀威完成签到,获得积分20
10秒前
啦11发布了新的文献求助10
10秒前
10秒前
11秒前
传奇3应助浮云采纳,获得10
11秒前
11秒前
情怀应助玩命的糖豆采纳,获得10
11秒前
11秒前
酷波er应助清新的秋白采纳,获得10
11秒前
元谷雪发布了新的文献求助10
12秒前
whiteside完成签到,获得积分10
12秒前
13秒前
Andd发布了新的文献求助10
13秒前
14秒前
植物园完成签到,获得积分10
15秒前
15秒前
ruirui发布了新的文献求助30
15秒前
无花果应助QP采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420