材料科学
反射损耗
陶瓷
微波食品加热
电介质
溅射沉积
复合材料
阻抗匹配
吸收(声学)
复合数
薄膜
微观结构
电阻抗
光电子学
溅射
纳米技术
工程类
物理
电气工程
量子力学
作者
Ben Huang,Hailong Hu,Sean Lim,Xiu‐Zhi Tang,Xiaozhong Huang,Yu Liu,Jianling Yue
标识
DOI:10.1016/j.jallcom.2021.163204
摘要
The microwave absorbing ability of long fibers could be effectively improved by a multi-layered coating composed of a magnetic metal and a dielectric ceramic. In this work, a gradient FeNi-SiO2 film has been deposited on SiCf (SiCf/ FeNi-SiO2) by a magnetron sputtering method. The phase composition, microstructure, and electromagnetic properties of SiCf/FeNi-SiO2 were systematically investigated. Then, the SiCf/FeNi-SiO2 was mixed with wax to study the microwave absorbing property. With only 10 wt%, the SiCf/FeNi-SiO2/wax composite exhibits excellent microwave absorption performance. The optimized reflection loss of SiCf/FeNi-SiO2 was up to -55.2 dB at 10.37 GHz with a thickness of 2.5 mm, and the absorption bandwidth below -10 dB is 6.84 GHz (from 11.08 to 17.92 GHz) with a sample thickness of only 2.0 mm. The enhanced microwave absorption performance of SiCf/FeNi-SiO2 benefits from the gradient FeNi-SiO2 film, which increases Debye dipole polarization and endows the SiCf with better impedance matching. This method can be applied to other fibers for high-performance microwave absorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI