Towards delay-optimized and resource-efficient network function dynamic deployment for VNF service chaining

连锁 计算机科学 软件部署 分布式计算 资源(消歧) 计算机网络 功能(生物学) 服务(商务) 操作系统 心理学 心理治疗师 经济 进化生物学 经济 生物
作者
Chao Bu,Jinsong Wang,Xingwei Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:120: 108711-108711 被引量:12
标识
DOI:10.1016/j.asoc.2022.108711
摘要

By decoupling virtualized network functions from the dedicated network equipment on which they run, Network Function Virtualization (NFV) has brought a flexible and economical way to support the complex communication demands of different applications. Virtualized Network Functions (VNFs) can be dispatched and deployed as instances of plain software on or near the communication paths of applications to establish Service Function Chains (SFCs), so as to provide special packet processing operations beyond simple packet forwarding. However, it is still a great challenge to dynamically place appropriate network functions at suitable locations so as to improve the efficiency of establishing SFCs and optimize network resource utilization. In this paper, the mechanism of dynamically deploying customized network functions via NFV is proposed. By predicting the future popularities of applications to switches, it adaptively places most of the appropriate network functions in corresponding forwarding equipment before they are massively requested. The serious latency and extra resource consumption caused by real-timely dispatching and deploying most of the requested network functions will be avoided. Then, the approach of Ant Colony Optimization (ACO) inspired multi-switch cooperative network function providing is devised. By cooperating multiple forwarding equipment on the packet transmission path, it makes full use of the already placed network functions to support packet processing operations in time with the cost and delay factors jointly considered. Simulation results show that the proposed mechanism has significant improvements in time overhead and resource utilization compared with the current state of the art. Specifically, our mechanism is capable of improving the service delay, the function utilization ratio, and the SFC adjustment efficiency by about 14%, 10% and 12% respectively, compared with corresponding work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
1秒前
无花果应助coc采纳,获得10
1秒前
奶爸回家完成签到,获得积分10
1秒前
慕青应助小杨采纳,获得10
1秒前
乐乐应助shaco采纳,获得50
2秒前
略略完成签到,获得积分10
2秒前
所所应助孙帅采纳,获得10
2秒前
打打应助123采纳,获得10
2秒前
3秒前
Hello应助优雅翎采纳,获得10
3秒前
桐桐应助蒸盐粥采纳,获得10
3秒前
3秒前
小伙伴完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
4秒前
zz发布了新的文献求助10
4秒前
11发布了新的文献求助10
5秒前
俭朴完成签到,获得积分20
5秒前
wwe发布了新的文献求助10
6秒前
万能图书馆应助hhj采纳,获得10
6秒前
6秒前
7秒前
刘丽完成签到,获得积分20
8秒前
8秒前
hami发布了新的文献求助10
8秒前
要减肥的夜蕾完成签到,获得积分20
8秒前
MLL关闭了MLL文献求助
8秒前
FiFi完成签到 ,获得积分10
9秒前
mei发布了新的文献求助10
9秒前
香蕉觅云应助zkc采纳,获得10
10秒前
10秒前
11秒前
蔺山河完成签到,获得积分10
11秒前
樱铃完成签到,获得积分10
11秒前
11秒前
人小鸭儿大完成签到 ,获得积分10
11秒前
11秒前
12秒前
fangtong发布了新的文献求助10
12秒前
慈祥的梦露完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003