A nine-gene signature identification and prognostic risk prediction for patients with lung adenocarcinoma using novel machine learning approach

基因签名 计算机科学 特征选择 单变量 Lasso(编程语言) 逻辑回归 比例危险模型 人工智能 支持向量机 弹性网正则化 机器学习 回归 成对比较 交叉验证 逐步回归 预测建模 数据挖掘 计算生物学 基因 统计 多元统计 生物 医学 内科学 数学 基因表达 遗传学 万维网
作者
Eskezeia Y. Dessie,Jan‐Gowth Chang,Ya‐Sian Chang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105493-105493 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105493
摘要

Lung adenocarcinoma (LUAD) is one the most prevalent cancer with high mortality and its risk stratification is limited due lack of reliable molecular biomarkers. Although several studies have been conducted to identify gene signature involved in LUAD progression, most currently used methods to select gene features did not fully consider the problem of the existence of strong pairwise gene correlations as it resulted inconsistency in gene election. Therefore, it is crucial to develop new strategy to identify reliable gene signatures that improve risk prediction.In this study, novel feature selection strategy (1) univariate Cox regression model to select survival associated genes (2) integrating rigid Cox regression with Adaptive Lasso model to identify informative survival associated genes (3) stepwise Cox regression model to identify optimal gene signature and (4) prognostic risk predictive model for LUAD (PRPML) was constructed. The PRPML was developed-based on four machine learning (ML) methods including logistic regression (LR), K-nearest neighbors (KNN), support vector machine with the radial kernel (SVMR), and average neural network (Avnet). The PRPML model successfully stratified high-risk and low-risk groups of patients with LUAD in three datasets. The PRPML achieved an area under the curve (AUC) of 0.812 and 0.863 in the validation datasets. Finally, a nine-potential gene signature was found and showed great potential for risk prediction.Our study demonstrates that the developed strategy identified a nine potential gene signature for accurate risk prediction performance and this signature could provide valuable clue into the understanding of the molecular mechanism of LUAD disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助言十采纳,获得10
5秒前
AAA111122完成签到,获得积分10
7秒前
李健应助huang采纳,获得10
7秒前
正宗发布了新的文献求助40
11秒前
宇是眼中星眸完成签到 ,获得积分10
11秒前
12秒前
Skywalker发布了新的文献求助10
15秒前
15秒前
16秒前
pluto应助Jack采纳,获得10
17秒前
伤心的量子完成签到,获得积分10
18秒前
19秒前
huang发布了新的文献求助10
21秒前
萱萱发布了新的文献求助10
21秒前
24秒前
喜悦发布了新的文献求助10
25秒前
hua完成签到 ,获得积分10
26秒前
啦啦咔嘞完成签到,获得积分10
29秒前
30秒前
不吃西瓜发布了新的文献求助10
31秒前
Skywalker完成签到,获得积分10
32秒前
冷静的若枫完成签到 ,获得积分10
33秒前
星辰大海应助羞涩的代男采纳,获得10
34秒前
干净的人达完成签到 ,获得积分10
35秒前
Hello应助杨花落尽子规啼采纳,获得10
40秒前
41秒前
41秒前
42秒前
马甲发布了新的文献求助10
44秒前
言十发布了新的文献求助10
45秒前
hcmsaobang2001完成签到,获得积分10
45秒前
李昕123发布了新的文献求助10
45秒前
46秒前
今后应助海棠采纳,获得30
48秒前
结实擎苍发布了新的文献求助10
48秒前
48秒前
少年啊完成签到,获得积分10
50秒前
50秒前
50秒前
猪猪发布了新的文献求助20
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672005
求助须知:如何正确求助?哪些是违规求助? 3228470
关于积分的说明 9780707
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610371
邀请新用户注册赠送积分活动 760671
科研通“疑难数据库(出版商)”最低求助积分说明 736145