作者
M. Sturny,Serkan Karakus,Rodrigo A. Fraga‐Silva,Nikolaos Stergiopulos,Arthur L. Burnett
摘要
Neurogenic erectile dysfunction (ED) following radical prostatectomy (RP) is a frequent complication often leading to erectile tissue remodeling and permanent ED. Low-intensity electrostimulation (LIES) has been shown to enhance peripheral nerve regeneration, however, its application on cavernous nerves (CN) has never been investigated.To investigate whether LIES enhances CN regeneration, improves erectile function (EF) recovery, and prevents corpora cavernosal remodeling after CN injury, which is a principal factor for ED following RP.Adult male Sprague-Dawley rats were divided into Sham, Bilateral Cavernous Nerve Injury (BCNI), and BCNI + LIES (1V, 0.1ms, 12Hz, 1h/day). After 7days, EF was assessed (ICP measurement). Penes and CN were collected for molecular analyses of TGF-β1, Il-6, CRP, eNOS, ERK and AKT protein levels in corpus cavernosum (CC), and immunohistological analysis of DHE, total collagen and α-SMA in CC and S-100, Tub-III, DAPI, TUNEL, and nNOS in CN.Effects of LIES on EF, erectile tissue remodeling and CN structure.EF was decreased (P < .05) 7 days after BCNI and increased (P < .05) by LIES. Intracavernosal reactive oxygen species (DHE) was increased (P < .05) after BCNI and normalized by LIES. Protein expressions of TGF-β1, IL-6, and CRP were increased in the penis (P < .05) after BCNI and normalized by LIES. The α-SMA and/or total collagen ratio was decreased (P < .05) after BCNI in the penis and normalized by LIES. Protein expression ratio of p-ERK/ERK and p-AKT/AKT did not change after BCNI but increased (P < .05) in LIES group. Myelination and number of nNOS positive cells in the CN were decreased (P < .05) after BCNI and normalized by LIES. The number of apoptotic nerve cells within the dorsal penile nerve was increased (P < .05) after BCNI and decreased (P < .05) by LIES compared to the BCNI group. There were no differences in eNOS expression in the penis between study groups.LIES may offer a potential new tool for penile rehabilitation and ED management following RP, potentially enhancing EF recovery and minimizing the side effects of this surgery.This study provides evidence of the protective effect of LIES on EF and tissue remodeling following CN injury; nevertheless, this study has been conducted on animals and the translation to humans remains to be demonstrated. Further research to identify the underlying mechanisms of action is required.This study demonstrates that LIES of the CN after CN injury protects CN structure, enhances EF recovery, and prevents corpora cavernosal remodeling.