Manganese-doped nickel-iron bimetallic hydroxide catalyst for efficient electrocatalytic oxygen evolution reaction

双金属片 催化作用 氢氧化物 析氧 无机化学 兴奋剂 氧气 化学 电催化剂 氧还原反应 材料科学 电极 电化学 有机化学 物理化学 光电子学
作者
Zemin Sun,Liu Lin,Dajie Ding,Lanke Luo,Zhijie Li,Mengwei Yuan,Genban Sun
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:67 (20): 2423-2430 被引量:4
标识
DOI:10.1360/tb-2021-1323
摘要

Hydrogen energy has many advantages such as wide source, high calorific value, clean and renewable energy, which is considered ideal secondary energy. Under the background of “carbon peak” and “carbon neutral”, the development of hydrogen energy has become the strategic deployment of all countries in the world. Renewable energy is converted into electric energy, and hydrogen production from water electrolysis is further realized through electric energy, which is currently considered as one of the safe and green way of hydrogen production. However, in the actual process of hydrogen production by electrolysis of water, there are problems such as high reaction overpotential and low energy conversion efficiency, which seriously restrict the cost of hydrogen production. During water electrolysis, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) occur at negative and positive electrodes respectively. Compared with the HER process of the two-electron reaction, the four-electron OER process requires a higher overpotential. Therefore, the four-electron OER process becomes the decisive step of the reaction. In order to achieve high efficiency and low energy consumption of hydrogen production process, it is urgent to use cheap, efficient and stable OER catalyst. At present, the search for efficient and low-cost OER catalyst is still the “holy grail” of water splitting. Among many non-noble metal catalysts, NiFe-layered double hydroxides (NiFe-LDHs) are considered as an ideal OER electrocatalyst in alkaline conditions due to their low raw material cost and adjustable structure. However, for NiFe-LDHs laminates, it is generally believed that the edge metal sites have higher catalytic activity than the internal metal sites, which leads to the insufficient utilization of the metal sites inside the laminates and reduces the catalytic activity of the OER reaction. In order to solve the above problems, based on the microstructural regulation of NiFe-LDHs, some methods have been used to improve its catalytic activity and stability in the OER process. Heterogeneous element doping is considered to be an effective method to regulate the electronic structure and electrochemical activity of catalysts. Metal ion doping (Cr, Cu, V, etc.) can optimize the electronic structure of nickel metal active site, reduce reaction overpotential, and improve catalytic efficiency. However, the high biotoxicity of traditional transition metals (Cr, V, Cu, etc.) limits their industrial application. Mn (Mn2+Mn3+Mn4+) with rich variation characteristics has a potential role in regulating lamellar charge characteristics. Herein, in order to fully improve the utilization of NiFe-LDHs laminates, this study introduces manganese ions with variable valence characteristics into NiFe-LDHs laminates (Mn-NiFe-LDHs), and utilizes the variable valence characteristics of manganese ions to fully enhance the carrier mobility and promote electron transfer in the laminate. At the same time, due to the electronegativity characteristics of manganese ions, part of the electrons will be transferred from the vicinity of the nickel site to the vicinity of the manganese site, causing the nickel site to exhibit electron-deficient characteristics, which enhance the overall capture of the electron-rich oxygen-containing functional groups of the laminate, thereby effectively enhancing the OER catalytic activity. According to the results of the catalytic reaction, the Mn-NiFe-LDHs electrode exhibits an overpotential of only 332 mV at a current density of 10 mA/cm2, which is lower than the initial NiFe-LDHs of 384 mV. The reasonable doping of manganese ions can effectively adjust the Ni2+ site activity and enhance its electrocatalytic activity. And to further clarify the effect of doping on the activity of LDHs laminates to provide experimental facts support.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腰果虾仁完成签到 ,获得积分10
刚刚
穆一手完成签到 ,获得积分10
1秒前
科研小郭完成签到,获得积分10
3秒前
上官若男应助Singularity采纳,获得10
7秒前
mailgo完成签到,获得积分10
8秒前
9秒前
wait完成签到 ,获得积分10
14秒前
LYM完成签到,获得积分10
15秒前
申木完成签到 ,获得积分10
15秒前
开拖拉机的医学僧完成签到 ,获得积分10
17秒前
牛奶面包完成签到 ,获得积分10
23秒前
23秒前
zcydbttj2011完成签到 ,获得积分10
26秒前
FengYun完成签到 ,获得积分0
28秒前
Singularity发布了新的文献求助10
28秒前
张大星完成签到 ,获得积分10
30秒前
simpleblue完成签到 ,获得积分10
40秒前
端庄的猕猴桃完成签到 ,获得积分10
44秒前
鲜艳的向南完成签到 ,获得积分10
49秒前
geold完成签到,获得积分10
55秒前
平常山河完成签到 ,获得积分10
56秒前
可飞完成签到,获得积分10
58秒前
59秒前
陈秋完成签到,获得积分10
1分钟前
汤姆完成签到 ,获得积分10
1分钟前
Singularity发布了新的文献求助10
1分钟前
HEIKU应助陈秋采纳,获得10
1分钟前
任梓宁完成签到 ,获得积分10
1分钟前
新新完成签到 ,获得积分20
1分钟前
NEO完成签到 ,获得积分10
1分钟前
匆匆赶路人完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
1分钟前
追寻的冬寒完成签到 ,获得积分10
1分钟前
深情安青应助Ray采纳,获得10
1分钟前
xue112完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
nt1119完成签到 ,获得积分10
1分钟前
xiao完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768880
捐赠科研通 2440255
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792