Machine learning algorithm as a sustainable tool for dissolved oxygen prediction: a case study of Feitsui Reservoir, Taiwan

灵敏度(控制系统) 水质 人工神经网络 可靠性(半导体) 计算机科学 质量(理念) 电流(流体) 算法 机器学习 数据挖掘 人工智能 工程类 电气工程 功率(物理) 哲学 物理 认识论 生物 量子力学 电子工程 生态学
作者
Balahaha Fadi Ziyad Sami,Sarmad Dashti Latif,Ali Najah Ahmed,Chow Ming Fai,Muhammad Ary Murti,Asep Suhendi,Balahaha Hadi Ziyad Sami,Jee Khai Wong,Ahmed H. Birima,Ahmed El‐Shafie
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:25
标识
DOI:10.1038/s41598-022-06969-z
摘要

Water quality status in terms of one crucial parameter such as dissolved oxygen (D.O.) has been an important concern in the Fei-Tsui reservoir for decades since it's the primary water source for Taipei City. Therefore, this study aims to develop a reliable prediction model to predict D.O. in the Fei-Tsui reservoir for better water quality monitoring. The proposed model is an artificial neural network (ANN) with one hidden layer. Twenty-nine years of water quality data have been used to validate the accuracy of the proposed model. A different number of neurons have been investigated to optimize the model's accuracy. Statistical indices have been used to examine the reliability of the model. In addition to that, sensitivity analysis has been carried out to investigate the model's sensitivity to the input parameters. The results revealed the proposed model capable of capturing the dissolved oxygen's nonlinearity with an acceptable level of accuracy where the R-squared value was equal to 0.98. The optimum number of neurons was found to be equal to 15-neuron. Sensitivity analysis shows that the model can predict D.O. where four input parameters have been included as input where the d-factor value was equal to 0.010. This main achievement and finding will significantly impact the water quality status in reservoirs. Having such a simple and accurate model embedded in IoT devices to monitor and predict water quality parameters in real-time would ease the decision-makers and managers to control the pollution risk and support their decisions to improve water quality in reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助腼腆的又晴采纳,获得10
1秒前
chen完成签到,获得积分10
1秒前
1秒前
eye完成签到,获得积分10
2秒前
ttty完成签到,获得积分10
2秒前
FashionBoy应助善良过客采纳,获得10
3秒前
赘婿应助懵懂的小夏采纳,获得10
3秒前
迷路海蓝应助。。。。采纳,获得10
3秒前
Jie完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助CNX采纳,获得10
4秒前
jeff完成签到,获得积分10
5秒前
公西栾完成签到,获得积分10
5秒前
5秒前
6秒前
peggypan108完成签到,获得积分10
6秒前
白子双发布了新的文献求助10
6秒前
aa发布了新的文献求助10
7秒前
JUN完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助地质学一点采纳,获得50
7秒前
7秒前
乐强发布了新的文献求助10
8秒前
英俊的铭应助丢丢银采纳,获得10
8秒前
8秒前
8秒前
拾一完成签到,获得积分10
8秒前
公西栾发布了新的文献求助10
8秒前
cloud发布了新的文献求助10
8秒前
琪冀发布了新的文献求助10
9秒前
兔子很颓发布了新的文献求助10
10秒前
11秒前
lalala应助小艾冂学采纳,获得10
11秒前
粱自中发布了新的文献求助10
13秒前
子车茗应助LDM采纳,获得20
13秒前
琪冀完成签到,获得积分10
14秒前
Genius发布了新的文献求助10
14秒前
ashelya完成签到 ,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453