Architectural distortion detection based on superior–inferior directional context and anatomic prior knowledge in digital breast tomosynthesis

人工智能 计算机科学 背景(考古学) 乳腺癌 深度学习 乳腺癌筛查 乳房成像 乳腺摄影术 乳房磁振造影 体素 接收机工作特性 计算机视觉 模式识别(心理学) 放射科 医学 机器学习 癌症 古生物学 内科学 生物
作者
Yue Li,Zilong He,Xiangyuan Ma,Weixiong Zeng,Jialing Liu,Weimin Xu,Zeyuan Xu,Sina Wang,Chanjuan Wen,Hui Zeng,Jiefang Wu,Weiguo Chen,Yao Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3749-3768 被引量:6
标识
DOI:10.1002/mp.15631
摘要

In 2020, breast cancer becomes the most leading diagnosed cancer all over the world. The burden is increasing in the prevention and treatment of breast cancer. Accurately detecting breast lesions in screening images is important for early detection of cancer. Architectural distortion (AD) is one of the breast lesions that need to be detected.To develop a deep-learning-based computer-aided detection (CADe) model for AD in digital breast tomosynthesis (DBT). This model uses the superior-inferior directional context of DBT and anatomic prior knowledge to reduce false positive (FP). It can identify some negative samples that cannot be distinguished by deep learning features.The proposed CADe model consists of three steps. In the first step, a deep learning detection network detects two-dimensional (2D) candidates of ADs in DBT slices with the inputs preprocessed by Gabor filters and convergence measure. In the second step, three-dimensional (3D) candidates are obtained by stacking 2D candidates along superior-inferior direction. In the last step, FP reduction for 3D candidates is implemented based on superior-inferior directional context and anatomic prior knowledge of breast. DBT data from 99 cases with AD were used as the training set to train the CADe model, and data from 208 cases were used as an independent test set (including 108 cases with AD and 100 cases without AD as the control group). The free-response receiver operating characteristic and mean true positive fraction (MTPF) in the range of 0.05-2.0 FPs per volume are used to evaluate the model.Compared with the baseline model based on convergence measure, our proposed method demonstrates significant improvement (MTPF: 0.2826 ± 0.0321 vs. 0.6640 ± 0.0399). Results of an ablation study show that our proposed context- and anatomy-based FP reduction methods improve the detection performance. The number of FPs per DBT volume reduces from 2.47 to 1.66 at 80% sensitivity after employing these two schemes.The deep learning model demonstrates practical value for AD detection. The results indicate that introducing superior-inferior directional context and anatomic prior knowledge into model can indeed reduce FPs and improve the performance of CADe model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助土豪的傲菡采纳,获得10
刚刚
zz发布了新的文献求助20
刚刚
英俊的铭应助务实惜儿采纳,获得10
2秒前
寻道图强应助弗洛克采纳,获得50
2秒前
2秒前
4秒前
4秒前
Wenpandaen应助111采纳,获得10
5秒前
研友_VZG7GZ应助zzkka采纳,获得10
6秒前
香菜兔子完成签到,获得积分10
8秒前
纯情的依凝完成签到,获得积分10
8秒前
10秒前
Lili发布了新的文献求助10
11秒前
彩色觅柔发布了新的文献求助10
11秒前
11秒前
小吃完成签到,获得积分10
11秒前
xiaowanzi完成签到,获得积分10
12秒前
12秒前
弗洛克给弗洛克的求助进行了留言
13秒前
13秒前
13秒前
14秒前
刺桐花下完成签到 ,获得积分10
15秒前
16秒前
Steven发布了新的文献求助30
18秒前
正直三颜完成签到,获得积分10
20秒前
风中傻姑发布了新的文献求助10
20秒前
感动冰姬发布了新的文献求助10
22秒前
封城岁月完成签到,获得积分10
22秒前
李鹃完成签到,获得积分10
24秒前
爆米花应助活力数据线采纳,获得10
25秒前
25秒前
银杉发布了新的文献求助10
26秒前
不错哟小伙子完成签到 ,获得积分10
26秒前
landuuoo完成签到,获得积分10
27秒前
元锦程完成签到,获得积分10
28秒前
dddww完成签到,获得积分10
28秒前
OK完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839