亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 接收机工作特性 列线图 逻辑回归 人工智能 机器学习 线性判别分析 深静脉 内科学 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:161: 104733-104733 被引量:39
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
6秒前
小巫发布了新的文献求助10
14秒前
Jasper应助cheesy采纳,获得10
20秒前
去去去去发布了新的文献求助10
21秒前
44秒前
cheesy发布了新的文献求助10
47秒前
1分钟前
FMHChan完成签到,获得积分10
1分钟前
风信子deon01完成签到,获得积分10
1分钟前
1分钟前
于洋完成签到 ,获得积分10
1分钟前
ZhJF完成签到 ,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
半岛岛发布了新的文献求助10
2分钟前
科研通AI2S应助athena采纳,获得10
2分钟前
斯文败类应助去去去去采纳,获得10
3分钟前
小叶完成签到 ,获得积分10
3分钟前
sallltyyy完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分10
3分钟前
半岛岛完成签到,获得积分10
3分钟前
3分钟前
3分钟前
去去去去发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Amen完成签到,获得积分10
4分钟前
4分钟前
4分钟前
染东完成签到,获得积分10
4分钟前
4分钟前
小巫发布了新的文献求助10
4分钟前
染东发布了新的文献求助10
4分钟前
梓歆完成签到 ,获得积分10
4分钟前
自信的傲晴完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助安输采纳,获得10
5分钟前
Jack80发布了新的文献求助800
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159