Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:161: 104733-104733 被引量:66
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
anz完成签到 ,获得积分10
1秒前
善学以致用应助风语村采纳,获得10
2秒前
今后应助何时采纳,获得10
2秒前
chuo0004完成签到,获得积分10
2秒前
壮观乘云发布了新的文献求助10
3秒前
嘻嘻哈哈应助超级的路人采纳,获得10
4秒前
耶耶耶耶宝完成签到,获得积分10
4秒前
大龙哥886应助Queena采纳,获得10
4秒前
11发布了新的文献求助10
6秒前
dzh发布了新的文献求助10
6秒前
7秒前
传奇3应助小高的茯苓糕采纳,获得10
7秒前
7秒前
深情安青应助jun采纳,获得10
8秒前
gjww发布了新的文献求助10
9秒前
michelle完成签到,获得积分10
9秒前
酷波er应助magiczhu采纳,获得10
9秒前
12秒前
小菜发布了新的文献求助10
12秒前
dzh完成签到,获得积分10
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得20
14秒前
14秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
超级的路人完成签到,获得积分10
16秒前
奶味蓝发布了新的文献求助10
16秒前
tff完成签到 ,获得积分10
16秒前
Winnie发布了新的文献求助10
17秒前
gjww发布了新的文献求助10
17秒前
TH完成签到,获得积分10
17秒前
星辰大海应助懦弱的寄灵采纳,获得30
18秒前
CodeCraft应助凡不凡人采纳,获得10
18秒前
瑶瑶瑶完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394197
求助须知:如何正确求助?哪些是违规求助? 4515443
关于积分的说明 14054147
捐赠科研通 4426698
什么是DOI,文献DOI怎么找? 2431463
邀请新用户注册赠送积分活动 1423587
关于科研通互助平台的介绍 1402559