已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:161: 104733-104733 被引量:54
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肖易应助幸福大白采纳,获得10
刚刚
zyq完成签到 ,获得积分10
1秒前
故城完成签到 ,获得积分10
1秒前
车灵寒发布了新的文献求助20
6秒前
脑洞疼应助Olivia采纳,获得30
6秒前
7秒前
wab完成签到,获得积分0
7秒前
弎夜发布了新的文献求助30
9秒前
忧心的网络完成签到,获得积分20
11秒前
不想干活应助幸福大白采纳,获得10
13秒前
不想干活应助幸福大白采纳,获得10
13秒前
万能图书馆应助幸福大白采纳,获得10
13秒前
领导范儿应助coollz采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
15秒前
汉堡包应助科研三轮车采纳,获得10
19秒前
23秒前
Eliauk完成签到 ,获得积分10
27秒前
活泼尔烟发布了新的文献求助10
29秒前
32秒前
34秒前
赘婿应助车灵寒采纳,获得10
36秒前
36秒前
崔梦楠完成签到 ,获得积分10
37秒前
HUNGJJ发布了新的文献求助10
38秒前
无花果应助大佬求帮采纳,获得10
38秒前
Rainnnn发布了新的文献求助10
40秒前
丸太子发布了新的文献求助10
41秒前
香蕉觅云应助Yolo采纳,获得10
44秒前
44秒前
dkjg完成签到 ,获得积分10
48秒前
coollz发布了新的文献求助10
49秒前
mayounaizi14发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542