已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:161: 104733-104733 被引量:66
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣雪一完成签到,获得积分10
5秒前
沉默的谷丝完成签到,获得积分10
5秒前
ZJ完成签到,获得积分10
6秒前
susu完成签到,获得积分10
8秒前
xmsyq完成签到 ,获得积分10
9秒前
zzzzzz完成签到,获得积分10
11秒前
lingling完成签到,获得积分10
12秒前
Sunny完成签到 ,获得积分10
15秒前
Zzz完成签到,获得积分10
16秒前
陶醉的烤鸡完成签到 ,获得积分10
18秒前
傻傻的雅寒完成签到 ,获得积分20
19秒前
orixero应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
古渡应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
Mia给Mia的求助进行了留言
24秒前
所所应助ss采纳,获得10
25秒前
orixero应助Kyogoku采纳,获得10
26秒前
27秒前
28秒前
123完成签到 ,获得积分10
30秒前
张然发布了新的文献求助10
33秒前
笨笨人龙完成签到 ,获得积分10
34秒前
小迷糊完成签到 ,获得积分10
35秒前
LILI驳回了Hello应助
36秒前
韩明佐完成签到 ,获得积分10
37秒前
Orange应助滴滴答答采纳,获得10
38秒前
所所应助蕾蕾采纳,获得10
39秒前
酷波er应助吕薇采纳,获得10
41秒前
Robin发布了新的文献求助10
41秒前
41秒前
小蓝莓吃太胖完成签到 ,获得积分10
43秒前
张然完成签到,获得积分20
43秒前
科研通AI6应助孤独的静枫采纳,获得10
45秒前
46秒前
orixero应助简单采纳,获得10
46秒前
疯狂喵完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469866
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337422
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465272
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259