Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:161: 104733-104733 被引量:52
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
squirrel完成签到,获得积分10
刚刚
2秒前
TT完成签到,获得积分10
2秒前
爱因斯宣完成签到,获得积分20
4秒前
英俊的铭应助山雀采纳,获得10
4秒前
金枪鱼子发布了新的文献求助150
4秒前
豆子发布了新的文献求助20
4秒前
科研通AI2S应助Mansis采纳,获得10
5秒前
喜庆发布了新的文献求助10
5秒前
yangyang发布了新的文献求助10
5秒前
Lcccccc发布了新的文献求助10
5秒前
5秒前
5秒前
you发布了新的文献求助10
6秒前
6秒前
大气千柳关注了科研通微信公众号
6秒前
echo完成签到,获得积分10
6秒前
爆米花应助springwyc采纳,获得10
8秒前
鹿剑心完成签到 ,获得积分20
8秒前
8秒前
曲夜白完成签到 ,获得积分10
9秒前
NOBODY完成签到,获得积分10
9秒前
酷波er应助是容与呀采纳,获得10
10秒前
10秒前
han完成签到,获得积分10
10秒前
赘婿应助文龙采纳,获得10
10秒前
10秒前
斯文败类应助周娅敏采纳,获得10
10秒前
李健的小迷弟应助Kathy采纳,获得10
11秒前
小白兔发布了新的文献求助10
11秒前
陈艳林发布了新的文献求助10
11秒前
xiaoguai发布了新的文献求助20
11秒前
11秒前
alexyang完成签到,获得积分10
11秒前
12秒前
李霞发布了新的文献求助10
12秒前
美满筮发布了新的文献求助10
12秒前
firy完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582