亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Probability of Response to Tumor Necrosis Factor Inhibitors for Individual Patients With Ankylosing Spondylitis

医学 强直性脊柱炎 队列 内科学 安慰剂 物理疗法 临床试验 肿瘤科 替代医学 病理
作者
Runsheng Wang,Abhijit Dasgupta,Michael M. Ward
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (3): e222312-e222312 被引量:28
标识
DOI:10.1001/jamanetworkopen.2022.2312
摘要

Tumor necrosis factor inhibitors (TNFis) have revolutionized the management of ankylosing spondylitis (AS); however, the lack of notable clinical responses in approximately one-half of patients suggests important heterogeneity in treatment response. Identifying patients likely to respond or not respond to TNFis could provide opportunities to personalize treatment strategies.To develop models of the probability of short-term response to TNFi treatment in individual patients with active AS.This is a retrospective cohort study using data of the TNFi group (ie, treatment group) from 10 randomized clinical trials (RCTs) of TNFi treatment among patients with active AS, conducted from 2002 to 2016. Participants were adult patients with active AS who failed nonsteroidal anti-inflammatory drugs. Included RCTs were phase 3 and 4 studies that assessed the efficacy of an originator TNFi at week 12 and/or week 24, either compared with placebo or an antirheumatic drug. The cohort was divided into a training and a testing set. Data analysis was conducted from July 1, 2019, to November 30, 2020.All included patients received an originator TNFi for at least 12 weeks.Outcomes included major response and no response based on the change of AS Disease Activity Score at 12 weeks. Machine learning algorithms were applied to estimate the probability of having major response and no response for individual patients.The study included 1899 participants from 10 trials. The training set included 1207 individuals (mean [SD] age, 39 [12] years; 908 [75.2%] men), of whom 407 (33.7%) had major response and 414 (34.3%) had no response. In the reduced logistic regression models, accuracy was 0.74 for major response and 0.75 for no response. The probability of major response increased with higher C-reactive protein (CRP) level, patient global assessment (PGA), and Bath AS Disease Activity Index (BASDAI) question 2 score and decreased with higher body mass index (BMI) and Bath AS Functional Index (BASFI) score. The probability of no response increased with age and BASFI score, and decreased with higher CRP level, BASDAI question 2 score, and PGA. In the testing set (692 participants; mean [SD] age, 38 [11] years; 533 [77.0%] men), models demonstrated moderate to high accuracy.In this cohort study, the probability of initial response to TNFi was predicted from baseline variables, which may facilitate personalized treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
16秒前
科目三应助科研通管家采纳,获得10
17秒前
郭楠楠发布了新的文献求助30
21秒前
23秒前
Xyyy完成签到,获得积分10
25秒前
RED发布了新的文献求助10
28秒前
满天星发布了新的文献求助10
47秒前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
缨绒完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
满天星完成签到 ,获得积分10
2分钟前
zqr发布了新的文献求助10
2分钟前
Hello应助Raunio采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
abdo完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
小蘑菇应助成太采纳,获得10
2分钟前
万能图书馆应助zxl采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
3分钟前
清泉发布了新的文献求助10
3分钟前
3分钟前
成太发布了新的文献求助10
3分钟前
zxl发布了新的文献求助10
3分钟前
CodeCraft应助郭楠楠采纳,获得10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
付辛博boo完成签到,获得积分10
4分钟前
付辛博boo发布了新的文献求助30
4分钟前
李健应助SiboN采纳,获得10
4分钟前
万能图书馆应助Goal采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359