A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design

人类白细胞抗原 计算生物学 肽疫苗 免疫系统 变压器 抗原 生物 免疫学 表位 生物化学 物理 量子力学 电压
作者
Yanyi Chu,Yan Zhang,Qiankun Wang,Lingfeng Zhang,Xuhong Wang,Yanjing Wang,Dennis R. Salahub,Qin Xu,Jianmin Wang,Xue Jiang,Yi Xiong,Dong‐Qing Wei
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 300-311 被引量:159
标识
DOI:10.1038/s42256-022-00459-7
摘要

Human leukocyte antigen (HLA) can recognize and bind foreign peptides to present them to specialized immune cells, then initiate an immune response. Computational prediction of the peptide and HLA (pHLA) binding can speed up immunogenic peptide screening and facilitate vaccine design. However, there is a lack of an automatic program to optimize mutated peptides with higher affinity to the target HLA allele. Here, to fill this gap, we develop the TransMut framework—composed of TransPHLA for pHLA binding prediction and an automatically optimized mutated peptides (AOMP) program—which can be generalized to any binding and mutation task of biomolecules. First, TransPHLA is developed by constructing a transformer-based model to predict pHLA binding, which is superior to 14 previous methods on pHLA binding prediction and neoantigen and human papilloma virus vaccine identification. For vaccine design, the AOMP program is then developed by exploiting the attention scores generated by TransPHLA to automatically optimize mutated peptides with higher affinity to the target HLA allele and with high homology to the source peptide. The proposed framework may automatically generate potential peptide vaccines for experimentalists. The human leukocyte antigen (HLA) complex plays an important role in building an immune response, but it is hard to predict which peptides will bind to it. Chu et al. present a transformer-based approach to identify which peptides have a high binding affinity to HLA, a task that can also be translated to other binding problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
阿根廷树懒完成签到 ,获得积分10
1秒前
ding应助hhy采纳,获得10
1秒前
huanglie完成签到,获得积分20
1秒前
NeoWu完成签到,获得积分10
1秒前
领导范儿应助x仙贝采纳,获得10
1秒前
1秒前
maclogos发布了新的文献求助10
1秒前
2秒前
雷小仙儿完成签到,获得积分10
2秒前
星辰大海应助小鬼采纳,获得10
2秒前
一一完成签到,获得积分20
3秒前
DaSheng完成签到,获得积分0
3秒前
故意的秋烟完成签到,获得积分10
3秒前
3秒前
朴实的绿兰完成签到 ,获得积分10
3秒前
4秒前
Provence完成签到,获得积分10
4秒前
5秒前
陈少华完成签到 ,获得积分10
6秒前
隐形曼青应助负责的钢笔采纳,获得10
6秒前
一个美女完成签到,获得积分10
6秒前
HughWang完成签到,获得积分10
6秒前
wanci应助小太阳采纳,获得10
6秒前
吉良吉影完成签到,获得积分10
6秒前
7秒前
居遥完成签到,获得积分10
7秒前
夏末完成签到,获得积分10
7秒前
xi完成签到 ,获得积分10
7秒前
8秒前
jie结完成签到,获得积分10
8秒前
8秒前
8秒前
TTYYI完成签到 ,获得积分10
8秒前
CodeCraft应助西蘑菇采纳,获得10
8秒前
huanglie发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
海带发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708093
求助须知:如何正确求助?哪些是违规求助? 5186941
关于积分的说明 15252667
捐赠科研通 4861172
什么是DOI,文献DOI怎么找? 2609274
邀请新用户注册赠送积分活动 1559914
关于科研通互助平台的介绍 1517692