U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns

医学 阈值 组内相关 灌注 再灌注治疗 灌注扫描 放射科 核医学 内科学 心脏病学 缺血 人工智能 计算机科学 临床心理学 图像(数学) 心理测量学
作者
Yaode He,Zhongyu Luo,Ying Zhou,Rui Xue,Jiaping Li,Haitao Hu,Shiyu Yan,Zhicai Chen,Jianan Wang,Min Lou
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:13 (5): 707-715 被引量:3
标识
DOI:10.1007/s12975-022-00986-w
摘要

Evaluation of cerebral perfusion is important for treatment selection in patients with acute large vessel occlusion (LVO). To assess ischemic core and tissue at risk more accurately, we developed a deep learning model named U-net using computed tomography perfusion (CTP) images. A total of 110 acute ischemic stroke patients undergoing endovascular treatment with major reperfusion (≥ 80%) or minimal reperfusion (≤ 20%) were included. Using baseline CTP, we developed two U-net models: one model in major reperfusion group to identify infarct core; the other in minimal reperfusion group to identify tissue at risk. The performance of fixed-thresholding methods was compared with that of U-net models. In the major reperfusion group, the model estimated infarct core with a Dice score coefficient (DSC) of 0.61 and an area under the curve (AUC) of 0.92, while fixed-thresholding methods had a DSC of 0.52. In the minimal reperfusion group, the model estimated tissue at risk with a DSC of 0.67 and an AUC of 0.93, while fixed-thresholding methods had a DSC of 0.51. In both groups, excellent volumetric consistency (intraclass correlation coefficient was 0.951 in major reperfusion and 0.746 in minimal reperfusion) was achieved between the estimated lesion and the actual lesion volume. Thus, in patients with anterior LVO, the CTP-based U-net models were able to identify infarct core and tissue at risk on baseline CTP superior to fixed-thresholding methods, providing individualized prediction of final lesion in patients with different reperfusion patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小东同志完成签到,获得积分10
刚刚
刚刚
张同学快去做实验呀完成签到,获得积分10
刚刚
木子木子李完成签到,获得积分10
1秒前
画画完成签到,获得积分10
1秒前
子叶叶子完成签到,获得积分10
1秒前
1秒前
遂安完成签到,获得积分10
2秒前
2秒前
华仔应助z_king_d_23采纳,获得10
2秒前
2秒前
2秒前
苹果发布了新的文献求助10
3秒前
GG发布了新的文献求助10
3秒前
彭于晏应助erhan7采纳,获得30
3秒前
orixero应助meiyugao采纳,获得10
4秒前
亦玉完成签到,获得积分10
4秒前
4秒前
JamesPei应助刘文莉采纳,获得10
4秒前
weijie发布了新的文献求助10
5秒前
Jenaloe发布了新的文献求助10
6秒前
maofeng发布了新的文献求助10
6秒前
NexusExplorer应助abcc1234采纳,获得10
6秒前
小刺猬完成签到,获得积分10
6秒前
辛辛点灯完成签到 ,获得积分10
7秒前
fsky发布了新的文献求助30
7秒前
桐桐应助yyl采纳,获得10
8秒前
ryt完成签到,获得积分10
8秒前
void科学家发布了新的文献求助10
8秒前
wwk发布了新的文献求助10
8秒前
ilzhuzhu发布了新的文献求助10
8秒前
wxd完成签到,获得积分10
10秒前
10秒前
11秒前
14秒前
昭奚完成签到 ,获得积分10
15秒前
晚凝完成签到,获得积分10
15秒前
Yan0909完成签到,获得积分10
15秒前
薛定谔的猫完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582