U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns

医学 阈值 组内相关 灌注 再灌注治疗 灌注扫描 放射科 核医学 内科学 心脏病学 缺血 人工智能 计算机科学 临床心理学 图像(数学) 心理测量学
作者
Yaode He,Zhongyu Luo,Ying Zhou,Rui Xue,Jiaping Li,Haitao Hu,Shiyu Yan,Zhicai Chen,Jianan Wang,Min Lou
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:13 (5): 707-715 被引量:3
标识
DOI:10.1007/s12975-022-00986-w
摘要

Evaluation of cerebral perfusion is important for treatment selection in patients with acute large vessel occlusion (LVO). To assess ischemic core and tissue at risk more accurately, we developed a deep learning model named U-net using computed tomography perfusion (CTP) images. A total of 110 acute ischemic stroke patients undergoing endovascular treatment with major reperfusion (≥ 80%) or minimal reperfusion (≤ 20%) were included. Using baseline CTP, we developed two U-net models: one model in major reperfusion group to identify infarct core; the other in minimal reperfusion group to identify tissue at risk. The performance of fixed-thresholding methods was compared with that of U-net models. In the major reperfusion group, the model estimated infarct core with a Dice score coefficient (DSC) of 0.61 and an area under the curve (AUC) of 0.92, while fixed-thresholding methods had a DSC of 0.52. In the minimal reperfusion group, the model estimated tissue at risk with a DSC of 0.67 and an AUC of 0.93, while fixed-thresholding methods had a DSC of 0.51. In both groups, excellent volumetric consistency (intraclass correlation coefficient was 0.951 in major reperfusion and 0.746 in minimal reperfusion) was achieved between the estimated lesion and the actual lesion volume. Thus, in patients with anterior LVO, the CTP-based U-net models were able to identify infarct core and tissue at risk on baseline CTP superior to fixed-thresholding methods, providing individualized prediction of final lesion in patients with different reperfusion patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助我是废物采纳,获得10
刚刚
yatou5651发布了新的文献求助30
1秒前
ppbk完成签到 ,获得积分10
1秒前
辛坦夫发布了新的文献求助10
2秒前
tianqi发布了新的文献求助10
2秒前
moon完成签到,获得积分10
4秒前
棉花糖发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
顾己发布了新的文献求助10
5秒前
大模型应助柔弱嵩采纳,获得10
5秒前
6秒前
不安丹烟完成签到,获得积分10
6秒前
7秒前
ACE发布了新的文献求助10
7秒前
fuiee完成签到,获得积分10
8秒前
小新完成签到,获得积分10
8秒前
科研通AI5应助jiaming采纳,获得10
8秒前
Hello应助嘀嘀嘀采纳,获得10
8秒前
9秒前
王哇噻完成签到 ,获得积分10
9秒前
11秒前
liulk发布了新的文献求助10
11秒前
筑楼听雨完成签到,获得积分10
11秒前
gm完成签到,获得积分10
11秒前
Eva发布了新的文献求助10
12秒前
我是老大应助wjx采纳,获得10
12秒前
Lucas应助Luhh采纳,获得10
12秒前
flow发布了新的文献求助10
12秒前
夕夜完成签到,获得积分10
13秒前
斯文败类应助激动的乐安采纳,获得10
14秒前
14秒前
小团子完成签到 ,获得积分10
15秒前
15秒前
17秒前
yuiyui09完成签到,获得积分20
17秒前
17秒前
kangnakangna完成签到,获得积分10
17秒前
LvXiaodie完成签到,获得积分10
18秒前
Jasper应助万事胜意采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681