RANSAC-based multi primitive building reconstruction from 3D point clouds

兰萨克 点云 几何本原 计算机科学 计算机视觉 分割 人工智能 点(几何) 参数统计 三维重建 建筑模型 数学 图像(数学) 几何学 模拟 统计
作者
Zhixin Li,Jie Shan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:185: 247-260 被引量:66
标识
DOI:10.1016/j.isprsjprs.2021.12.012
摘要

Building model reconstruction from 3D point clouds has been investigated for several decades with increasing interests. Building models represented by one or more parametric primitives can assure regularity and provide semantic information for the reconstructed buildings. However, there exist challenges in reliably determining building primitives, especially for compound buildings with multiple primitives. This paper presents a multi primitive reconstruction (MPR) approach to segment a compound bounding into several predefined primitives and determine their parameters from the point clouds. The method consists of primitive segmentation through a two-step RANSAC strategy, followed by holistic primitive fitting, and 3D Boolean operations. The first step segments the point cloud of a building into planar patches. The second step applies RANSAC strategy to further segment the predefined building primitives, where only points on adjacent planar patches are sampled to achieve high computational efficiency. The most probable primitive is then selected based on a set of quality metrics and corresponding parameters are holistically estimated with the identified inliers to form the building model. Finally, the 3D Boolean operation is used to reconstruct a topologically consistent 3D building model from its compositional primitives. The proposed RANSAC-MPR method has following advantages. (1) The framework for primitive segmentation is efficient since the sampling only occurs to adjacent planar patches; (2) the type of building primitives can be identified based on a score function without using advanced learning process; (3) compound buildings can be reconstructed through 3D union of the primitives determined by holistic fitting. Tested with 1054 buildings in three lidar and photogrammetry point clouds, the development is able to produce compound building models with regularized primitives at 85% boundary consistency and overall accuracy of 7 cm, which is about 0.14 times and 0.56 times ground point spacing for the lidar and photogrammetry datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Amanda采纳,获得10
刚刚
中和皇极应助11111采纳,获得10
刚刚
大白完成签到 ,获得积分10
1秒前
1秒前
等风吹完成签到,获得积分20
2秒前
2秒前
3秒前
kkt完成签到,获得积分10
3秒前
一见憘完成签到 ,获得积分10
4秒前
4秒前
大白关注了科研通微信公众号
4秒前
陈隆发布了新的文献求助10
6秒前
小马甲应助rudjs采纳,获得10
8秒前
祎橘发布了新的文献求助10
8秒前
jyy发布了新的文献求助200
8秒前
8秒前
顾矜应助GGbound采纳,获得10
9秒前
万能图书馆应助尊敬寒松采纳,获得10
10秒前
10秒前
zdd发布了新的文献求助10
10秒前
陈隆完成签到,获得积分10
12秒前
17秒前
20秒前
orixero应助wyj采纳,获得10
20秒前
泶1完成签到,获得积分10
21秒前
111完成签到,获得积分10
21秒前
21秒前
21秒前
尊敬寒松发布了新的文献求助10
22秒前
WenjingziWang完成签到,获得积分10
24秒前
26秒前
传奇3应助ddddd采纳,获得10
27秒前
石一发布了新的文献求助10
28秒前
bkagyin应助留白留白采纳,获得10
34秒前
twob完成签到,获得积分10
38秒前
欢喜念双发布了新的文献求助10
38秒前
39秒前
111发布了新的文献求助10
39秒前
ddddd发布了新的文献求助10
46秒前
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662