RANSAC-based multi primitive building reconstruction from 3D point clouds

兰萨克 点云 几何本原 计算机科学 计算机视觉 分割 人工智能 点(几何) 参数统计 三维重建 建筑模型 数学 图像(数学) 几何学 模拟 统计
作者
Zhixin Li,Jie Shan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:185: 247-260 被引量:66
标识
DOI:10.1016/j.isprsjprs.2021.12.012
摘要

Building model reconstruction from 3D point clouds has been investigated for several decades with increasing interests. Building models represented by one or more parametric primitives can assure regularity and provide semantic information for the reconstructed buildings. However, there exist challenges in reliably determining building primitives, especially for compound buildings with multiple primitives. This paper presents a multi primitive reconstruction (MPR) approach to segment a compound bounding into several predefined primitives and determine their parameters from the point clouds. The method consists of primitive segmentation through a two-step RANSAC strategy, followed by holistic primitive fitting, and 3D Boolean operations. The first step segments the point cloud of a building into planar patches. The second step applies RANSAC strategy to further segment the predefined building primitives, where only points on adjacent planar patches are sampled to achieve high computational efficiency. The most probable primitive is then selected based on a set of quality metrics and corresponding parameters are holistically estimated with the identified inliers to form the building model. Finally, the 3D Boolean operation is used to reconstruct a topologically consistent 3D building model from its compositional primitives. The proposed RANSAC-MPR method has following advantages. (1) The framework for primitive segmentation is efficient since the sampling only occurs to adjacent planar patches; (2) the type of building primitives can be identified based on a score function without using advanced learning process; (3) compound buildings can be reconstructed through 3D union of the primitives determined by holistic fitting. Tested with 1054 buildings in three lidar and photogrammetry point clouds, the development is able to produce compound building models with regularized primitives at 85% boundary consistency and overall accuracy of 7 cm, which is about 0.14 times and 0.56 times ground point spacing for the lidar and photogrammetry datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
时不我待C完成签到 ,获得积分10
4秒前
刘美茹发布了新的文献求助10
6秒前
一颗馒头完成签到,获得积分10
7秒前
Gilana应助不安问筠采纳,获得50
7秒前
乐乐应助ZZZ采纳,获得10
8秒前
9秒前
9秒前
酷波er应助devin578632采纳,获得10
11秒前
pluto应助二宝采纳,获得20
11秒前
共享精神应助韩志伟采纳,获得10
11秒前
13秒前
14秒前
14秒前
kidult发布了新的文献求助10
17秒前
azorworld6发布了新的文献求助10
18秒前
20秒前
刘美茹完成签到,获得积分20
20秒前
22秒前
cndxh完成签到 ,获得积分10
22秒前
devin578632发布了新的文献求助10
25秒前
小枣发布了新的文献求助10
25秒前
26秒前
27秒前
77最可爱完成签到,获得积分10
27秒前
27秒前
zizilala发布了新的文献求助10
30秒前
天天快乐应助Angenstern采纳,获得30
31秒前
zho发布了新的文献求助10
32秒前
33秒前
韩志伟发布了新的文献求助10
33秒前
ding应助ixueyi采纳,获得10
35秒前
标致的方盒完成签到,获得积分10
38秒前
赘婿应助lilac采纳,获得10
39秒前
zizilala完成签到,获得积分10
40秒前
ZZZ发布了新的文献求助10
40秒前
kun发布了新的文献求助10
41秒前
FrozNineTivus完成签到,获得积分10
43秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761844
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10134900
捐赠科研通 3019686
什么是DOI,文献DOI怎么找? 1658275
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766