GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites

泛素 卷积神经网络 人工智能 赖氨酸 计算生物学 深度学习 计算机科学 机器学习 构造(python库) 生物 生物化学 氨基酸 基因 程序设计语言
作者
Chenwei Wang,Xiaodan Tan,Dachao Tang,Yujie Gou,Han Cheng,Wanshan Ning,Shaofeng Lin,Weizhi Zhang,Miaomiao Chen,Di Peng,Yu Xue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:16
标识
DOI:10.1093/bib/bbab574
摘要

As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-specific ubiquitination sites is still a great challenge. Here, we carefully reviewed the existing tools for the prediction of general ubiquitination sites. Also, we developed a tool named GPS-Uber for the prediction of general and E3-specific ubiquitination sites. From the literature, we manually collected 1311 experimentally identified site-specific E3-substrate relations, which were classified into different clusters based on corresponding E3s at different levels. To predict general ubiquitination sites, we integrated 10 types of sequence and structure features, as well as three types of algorithms including penalized logistic regression, deep neural network and convolutional neural network. Compared with other existing tools, the general model in GPS-Uber exhibited a highly competitive accuracy, with an area under curve values of 0.7649. Then, transfer learning was adopted for each E3 cluster to construct E3-specific models, and in total 112 individual E3-specific predictors were implemented. Using GPS-Uber, we conducted a systematic prediction of human cancer-associated ubiquitination events, which could be helpful for further experimental consideration. GPS-Uber will be regularly updated, and its online service is free for academic research at http://gpsuber.biocuckoo.cn/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Owen应助丛玉林采纳,获得10
3秒前
真实的德天完成签到 ,获得积分10
4秒前
5秒前
MYW完成签到,获得积分10
5秒前
馥郁完成签到,获得积分10
6秒前
6秒前
热心的善愁完成签到,获得积分10
7秒前
Yy发布了新的文献求助10
8秒前
8秒前
Ninico发布了新的文献求助10
9秒前
10秒前
馥郁发布了新的文献求助10
11秒前
追寻奄发布了新的文献求助10
12秒前
叶泽发布了新的文献求助10
12秒前
15秒前
欧阳娜娜发布了新的文献求助10
15秒前
丛玉林发布了新的文献求助10
16秒前
kytmm2022发布了新的文献求助10
18秒前
执着皮皮虾完成签到,获得积分10
20秒前
科研通AI5应助我其实还好采纳,获得10
20秒前
科研菜鸡完成签到,获得积分10
22秒前
CipherSage应助八宝采纳,获得10
24秒前
kytmm2022完成签到,获得积分10
24秒前
丘比特应助执着皮皮虾采纳,获得10
26秒前
完美世界应助馥郁采纳,获得10
26秒前
Ava应助伶俐的冥幽采纳,获得10
28秒前
TZMY发布了新的文献求助10
32秒前
32秒前
33秒前
归尘应助秀丽笑容采纳,获得10
34秒前
36秒前
36秒前
lichunlei发布了新的文献求助10
39秒前
40秒前
失眠醉易应助乐乐采纳,获得30
40秒前
八宝发布了新的文献求助10
41秒前
44秒前
Lucas应助nanyuan123采纳,获得10
46秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775612
求助须知:如何正确求助?哪些是违规求助? 3321229
关于积分的说明 10204285
捐赠科研通 3036074
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797213
科研通“疑难数据库(出版商)”最低求助积分说明 757766