Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides

卷积神经网络 计算机科学 人工智能 人工神经网络 模式识别(心理学)
作者
Shengli Zhang,Xinjie Li
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:221: 104490-104490 被引量:22
标识
DOI:10.1016/j.chemolab.2022.104490
摘要

Therapeutic peptides, as active substances involved in a variety of cell functions in the organism, are essential participants to complete complex physiological activities of the body. Therefo r e, the prediction of therapeutic peptides is essential for researching on peptide-based therapies. The method of using biological experiments is considered to be time-consuming and labor-intensive. As a fast and accurate method, deep learning can process massive amounts of data on therapeutic peptides. In this research, we raise a deep learning model called Pep-CNN to accurately predict therapeutic peptides. Firstly, we represent the features of the peptide sequence based on the sequence position, the physicochemical property, and the evolutionary-derived feature and use the vectors to represent the sequence. After fusing the features, we use the improved classifier of Convolutional Neural Network (imCNN) to classify and predict eight kinds of peptides. The results show that, compared with other models, Pep-CNN can identify peptides more accurately, which is more conductive to the further research of therapeutic peptides by biomedical scientists. The codes and benchmark datasets are accessible at https://github.com/alivelxj/Pep-CNN . • A new model called Pep-CNN was proposed to predict therapeutic peptides. • The different methods are applied to extract features from the dataset. • An improved convolutional neural network is used to classify the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dr_zsc发布了新的文献求助10
1秒前
1秒前
金米面发布了新的文献求助10
1秒前
pluto应助heiniu采纳,获得10
7秒前
7秒前
畅快慕蕊发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
李健的小迷弟应助kgf采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
领导范儿应助JaneChen采纳,获得10
11秒前
11秒前
今后应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
yiyi发布了新的文献求助30
12秒前
12秒前
善学以致用应助lqy采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
烟花应助陈cxz采纳,获得10
12秒前
hanye完成签到 ,获得积分10
13秒前
小蘑菇应助zxh采纳,获得10
13秒前
Adon完成签到,获得积分10
15秒前
畅快慕蕊完成签到,获得积分10
16秒前
绝望核弹完成签到 ,获得积分10
17秒前
所所应助英勇的汉堡采纳,获得10
17秒前
晴小阳关注了科研通微信公众号
23秒前
24秒前
25秒前
25秒前
26秒前
28秒前
George发布了新的文献求助20
29秒前
CodeCraft应助lqy采纳,获得10
30秒前
陈cxz发布了新的文献求助10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163