Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides

卷积神经网络 计算机科学 人工智能 人工神经网络 模式识别(心理学)
作者
Shengli Zhang,Xinjie Li
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:221: 104490-104490 被引量:22
标识
DOI:10.1016/j.chemolab.2022.104490
摘要

Therapeutic peptides, as active substances involved in a variety of cell functions in the organism, are essential participants to complete complex physiological activities of the body. Therefo r e, the prediction of therapeutic peptides is essential for researching on peptide-based therapies. The method of using biological experiments is considered to be time-consuming and labor-intensive. As a fast and accurate method, deep learning can process massive amounts of data on therapeutic peptides. In this research, we raise a deep learning model called Pep-CNN to accurately predict therapeutic peptides. Firstly, we represent the features of the peptide sequence based on the sequence position, the physicochemical property, and the evolutionary-derived feature and use the vectors to represent the sequence. After fusing the features, we use the improved classifier of Convolutional Neural Network (imCNN) to classify and predict eight kinds of peptides. The results show that, compared with other models, Pep-CNN can identify peptides more accurately, which is more conductive to the further research of therapeutic peptides by biomedical scientists. The codes and benchmark datasets are accessible at https://github.com/alivelxj/Pep-CNN . • A new model called Pep-CNN was proposed to predict therapeutic peptides. • The different methods are applied to extract features from the dataset. • An improved convolutional neural network is used to classify the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ZZDXXX发布了新的文献求助10
4秒前
赘婿应助SHIKI采纳,获得10
5秒前
白白白发布了新的文献求助10
8秒前
11秒前
12秒前
14秒前
Aiden发布了新的文献求助10
15秒前
嗯哼举报水水求助涉嫌违规
17秒前
18秒前
19秒前
mouxq发布了新的文献求助10
19秒前
李爱国应助anan采纳,获得20
19秒前
Jasper应助科研通管家采纳,获得10
21秒前
淡然元彤应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
淡然元彤应助科研通管家采纳,获得10
21秒前
研友_8WM2On应助科研通管家采纳,获得10
21秒前
淡然元彤应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
带头大哥应助谦让蛋挞采纳,获得50
21秒前
wy.he应助小布莱克采纳,获得10
22秒前
zho应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
卟茨卟茨完成签到,获得积分10
22秒前
溟濛发布了新的文献求助10
24秒前
Way发布了新的文献求助10
26秒前
27秒前
喵誉玉完成签到 ,获得积分10
27秒前
29秒前
29秒前
柳叶刀小猪应助白白白采纳,获得30
30秒前
fighting发布了新的文献求助10
30秒前
嗯哼应助YK采纳,获得20
31秒前
32秒前
谦让蛋挞完成签到,获得积分20
33秒前
fff完成签到 ,获得积分10
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242524
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245111
捐赠科研通 2555398
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625586