Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides

卷积神经网络 计算机科学 人工智能 人工神经网络 模式识别(心理学)
作者
Shengli Zhang,Xinjie Li
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:221: 104490-104490 被引量:22
标识
DOI:10.1016/j.chemolab.2022.104490
摘要

Therapeutic peptides, as active substances involved in a variety of cell functions in the organism, are essential participants to complete complex physiological activities of the body. Therefo r e, the prediction of therapeutic peptides is essential for researching on peptide-based therapies. The method of using biological experiments is considered to be time-consuming and labor-intensive. As a fast and accurate method, deep learning can process massive amounts of data on therapeutic peptides. In this research, we raise a deep learning model called Pep-CNN to accurately predict therapeutic peptides. Firstly, we represent the features of the peptide sequence based on the sequence position, the physicochemical property, and the evolutionary-derived feature and use the vectors to represent the sequence. After fusing the features, we use the improved classifier of Convolutional Neural Network (imCNN) to classify and predict eight kinds of peptides. The results show that, compared with other models, Pep-CNN can identify peptides more accurately, which is more conductive to the further research of therapeutic peptides by biomedical scientists. The codes and benchmark datasets are accessible at https://github.com/alivelxj/Pep-CNN . • A new model called Pep-CNN was proposed to predict therapeutic peptides. • The different methods are applied to extract features from the dataset. • An improved convolutional neural network is used to classify the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
含糊的玲发布了新的文献求助10
刚刚
斯文败类应助小管采纳,获得10
1秒前
默许冰心完成签到,获得积分10
1秒前
2秒前
冬青ouo完成签到,获得积分10
2秒前
3秒前
上官若男应助夕荀采纳,获得10
3秒前
细腻砖头应助邹益春采纳,获得10
3秒前
3秒前
WD发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Li应助hsa_ID采纳,获得10
5秒前
微信研友发布了新的文献求助10
5秒前
阿乔发布了新的文献求助10
6秒前
嘿嘿嘿发布了新的文献求助10
6秒前
完美星落完成签到,获得积分10
6秒前
wuhao1完成签到,获得积分20
6秒前
liaoyu发布了新的文献求助10
6秒前
香蕉觅云应助XIAONIE25采纳,获得10
7秒前
guojingjing发布了新的文献求助10
7秒前
lilei发布了新的文献求助10
7秒前
达奚多思完成签到,获得积分10
7秒前
7秒前
纯真忆安发布了新的文献求助10
7秒前
7秒前
RRRRR1完成签到,获得积分20
7秒前
修马儿完成签到,获得积分10
8秒前
科研通AI6应助二胡儿采纳,获得10
8秒前
夕未息关注了科研通微信公众号
8秒前
科目三应助乐乐侠采纳,获得10
9秒前
小管完成签到,获得积分10
9秒前
ZCM发布了新的文献求助10
9秒前
9秒前
暴躁的夏之完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285