亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Custom Grasping: A Region-Based Robotic Grasping Detection Method in Industrial Cyber-Physical Systems

抓住 人工智能 机器人 任务(项目管理) 可重构性 计算机科学 工业机器人 一致性(知识库) 机器人学 对象(语法) 计算机视觉 控制工程 工程类 电信 程序设计语言 系统工程
作者
Yuanjun Laili,Zelin Chen,Lei Ren,Xiaokang Wang,M. Jamal Deen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 88-100 被引量:20
标识
DOI:10.1109/tase.2021.3139610
摘要

Industrial Cyber Physical Systems can use data and information gained from across a variety of different environments to enable robots that are reconfigurable. Custom grasping is a basic operation a robot must be able to carry out for a given task, i.e., finding the best grasping point for emergent behaviors. However, environmental disturbance and limited data degrade the precision and speed of many tailored machine learning models on robot grasping detection. This paper proposes a region-based method to enable fast custom grasping through fewer RGB-D data. The grasping detection problem is simplified as a two-stage prediction problem. At the first stage, a robust grasp candidate generation strategy is proposed based on the Sobel operator. At the second stage, a region-based predictor is designed to locate the best grasping point-pair for an emergent task. The predictor is trained by a modified consistency based self-training method to realize semi-supervised learning. Experimental results show that the success rate of custom grasping of new emergent object can be increased by 3.4% on average using the proposed method. By introducing data augmentation strategies in training, the success rate is further increased by 9.2% on average. A robot is able to grasp new object with 91.5% success rate using less than 100 training samples. The number of training samples required for the proposed method is less than to 1% of which for the previous works. Note to Practitioners—This research was motivated by the problem of robot reconfigurability for various industrial automation processes and focuses mainly on the recognition of grasping point-pair of emergent object for different task. Existing approaches on robotic grasping detection are tailored to a given object and require expensive training with large amount of labeled data. This paper presents a region-based few shot learning approach that enables the robot to detect the best grasping point-pair autonomously and quickly. We show how to generate candidate point-pairs with image distortion and background disturbance. We then demonstrate how the best grasping point-pair can be located with much less training cost. Experiments suggest that this approach is feasible in robot automation for handling a class of objects. In future research, we will construct behavior learning module to enable evolving cyber-physical robotic system for more purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼完成签到,获得积分10
43秒前
索谓完成签到 ,获得积分10
45秒前
杨震发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
Augustines完成签到,获得积分10
1分钟前
123完成签到,获得积分10
2分钟前
草木发布了新的文献求助10
2分钟前
桐桐应助clhkdyx采纳,获得10
2分钟前
草木发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
草木发布了新的文献求助10
3分钟前
852应助Xin采纳,获得10
3分钟前
TadeoEB完成签到,获得积分10
3分钟前
3分钟前
FashionBoy应助草木采纳,获得10
3分钟前
4分钟前
clhkdyx发布了新的文献求助10
4分钟前
bkagyin应助dyh0521采纳,获得10
4分钟前
4分钟前
dyh0521发布了新的文献求助10
4分钟前
dyh0521完成签到,获得积分20
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
草木发布了新的文献求助10
5分钟前
Orange应助山中蠢驴采纳,获得10
5分钟前
6分钟前
山中蠢驴发布了新的文献求助10
6分钟前
思源应助Wei采纳,获得20
6分钟前
天天快乐应助高兴的白柏采纳,获得10
6分钟前
英俊的铭应助窝窝窝书采纳,获得10
6分钟前
科研通AI5应助dahai采纳,获得30
6分钟前
英俊的铭应助执着的怜珊采纳,获得10
6分钟前
陈富贵完成签到 ,获得积分10
7分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277605
关于积分的说明 10003433
捐赠科研通 2993616
什么是DOI,文献DOI怎么找? 1642785
邀请新用户注册赠送积分活动 780623
科研通“疑难数据库(出版商)”最低求助积分说明 748912