Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alala发布了新的文献求助10
1秒前
LXR发布了新的文献求助10
1秒前
xiaobai完成签到,获得积分10
1秒前
脑洞疼应助乐观天磊采纳,获得10
1秒前
2秒前
qqqqy发布了新的文献求助10
2秒前
3秒前
fanfanzzz完成签到,获得积分10
3秒前
朽木发布了新的文献求助10
4秒前
4秒前
zhanghw完成签到,获得积分10
4秒前
EvaHo完成签到,获得积分10
4秒前
哭泣的小之完成签到,获得积分10
4秒前
冷傲半邪发布了新的文献求助30
5秒前
dktrrrr完成签到,获得积分10
5秒前
Manphie给nico666的求助进行了留言
5秒前
sjx1116完成签到 ,获得积分10
6秒前
小吴同学发布了新的文献求助10
7秒前
汤圆完成签到,获得积分10
7秒前
研友_Z1el0Z发布了新的文献求助10
8秒前
蒲黄妗子完成签到,获得积分10
8秒前
大碗完成签到,获得积分10
8秒前
在水一方应助忐忑的安筠采纳,获得10
9秒前
colddie发布了新的文献求助10
9秒前
10秒前
是雪雪吖完成签到,获得积分10
11秒前
11秒前
清脆靳完成签到,获得积分10
12秒前
zoe完成签到 ,获得积分10
12秒前
LXx发布了新的文献求助30
12秒前
12秒前
直率的傲安完成签到,获得积分10
14秒前
KirinLee麒麟完成签到,获得积分10
14秒前
14秒前
Ava应助faiting采纳,获得10
14秒前
冬青发布了新的文献求助10
15秒前
15秒前
科研通AI6应助alala采纳,获得10
16秒前
一只虾虾melody完成签到,获得积分10
17秒前
free应助hhhh采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329006
求助须知:如何正确求助?哪些是违规求助? 4468593
关于积分的说明 13905951
捐赠科研通 4361665
什么是DOI,文献DOI怎么找? 2395876
邀请新用户注册赠送积分活动 1389356
关于科研通互助平台的介绍 1360146