Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑问寒发布了新的文献求助10
1秒前
2秒前
Hello应助小闫同学采纳,获得10
2秒前
三千弱水为君饮完成签到,获得积分10
2秒前
3秒前
4秒前
wenrui完成签到 ,获得积分10
5秒前
jial发布了新的文献求助10
5秒前
丁仪完成签到,获得积分10
5秒前
汤汤完成签到,获得积分10
5秒前
王壮壮完成签到,获得积分10
6秒前
务实晓蓝完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
我是老大应助123采纳,获得10
6秒前
有结果应助Anna采纳,获得20
7秒前
MchemG应助guozizi采纳,获得30
8秒前
叶子发布了新的文献求助10
8秒前
chayue发布了新的文献求助10
9秒前
丘比特应助狗宅采纳,获得10
10秒前
活泼靖柏完成签到,获得积分20
11秒前
11秒前
小能猫发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
wqa1472发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
浮游应助teer采纳,获得10
15秒前
BLLL发布了新的文献求助10
16秒前
17秒前
憨人发布了新的文献求助10
18秒前
18秒前
Jadon完成签到,获得积分20
18秒前
传奇3应助xwc采纳,获得10
18秒前
18秒前
18秒前
19秒前
在水一方应助鲁万仇采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913425
求助须知:如何正确求助?哪些是违规求助? 4188082
关于积分的说明 13006529
捐赠科研通 3956687
什么是DOI,文献DOI怎么找? 2169306
邀请新用户注册赠送积分活动 1187692
关于科研通互助平台的介绍 1095261