Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷白猫应助Lin采纳,获得10
刚刚
刚刚
皮质醇完成签到,获得积分10
1秒前
福尔摩琪完成签到,获得积分10
1秒前
2秒前
xTx发布了新的文献求助10
2秒前
4秒前
于夜柳发布了新的文献求助10
5秒前
6秒前
大龄中二病完成签到,获得积分10
7秒前
NZH驳回了liian7应助
8秒前
Cecilia完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
今后应助mark采纳,获得10
10秒前
11秒前
小唐完成签到,获得积分20
11秒前
搜集达人应助杭ge采纳,获得10
12秒前
lilili某完成签到,获得积分20
12秒前
可爱的函函应助zzz采纳,获得10
13秒前
xTx完成签到,获得积分20
13秒前
CGDGD完成签到,获得积分10
15秒前
隐形曼青应助迷路的麋鹿采纳,获得10
15秒前
端庄书雁发布了新的文献求助10
15秒前
16秒前
小唐发布了新的文献求助10
16秒前
醉熏的井发布了新的文献求助10
17秒前
18秒前
19秒前
乐乐应助CGDGD采纳,获得10
19秒前
20秒前
gfqdts66完成签到 ,获得积分10
20秒前
慕青应助Yuantian采纳,获得10
23秒前
mark发布了新的文献求助10
23秒前
桐桐应助斑比采纳,获得10
24秒前
SciGPT应助生产队的建设者采纳,获得10
25秒前
26秒前
wllllll完成签到,获得积分10
26秒前
杭ge完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086