Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
疯狂的虔完成签到,获得积分10
刚刚
2秒前
CipherSage应助右右采纳,获得10
2秒前
玉衡发布了新的文献求助10
2秒前
yao chen完成签到,获得积分10
2秒前
朵拉完成签到,获得积分10
2秒前
由清涟完成签到,获得积分10
3秒前
Drhan完成签到,获得积分10
3秒前
FashionBoy应助断数循环采纳,获得10
3秒前
姣妹崽完成签到,获得积分10
3秒前
马一凡完成签到,获得积分0
3秒前
上官若男应助lan199623采纳,获得10
4秒前
俗人完成签到,获得积分10
4秒前
cangye发布了新的文献求助10
4秒前
Dotgene发布了新的文献求助10
4秒前
wanci应助CO2采纳,获得10
4秒前
joker发布了新的文献求助10
4秒前
SciGPT应助小超采纳,获得10
4秒前
4秒前
malubest完成签到,获得积分10
5秒前
华仔应助朴素的玫瑰采纳,获得30
5秒前
开心的饼干完成签到,获得积分10
6秒前
不会搞科研完成签到,获得积分0
6秒前
6秒前
6秒前
今年我必胖20斤完成签到,获得积分10
6秒前
6秒前
nini完成签到,获得积分10
7秒前
搜集达人应助1234采纳,获得10
8秒前
8秒前
Hwen完成签到,获得积分10
8秒前
susu完成签到,获得积分10
8秒前
英姑应助冷静飞柏采纳,获得10
9秒前
10秒前
10秒前
11秒前
Ryan发布了新的文献求助10
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600