已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi只熊发布了新的文献求助20
2秒前
Kylin完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
赘婿应助yi只熊采纳,获得20
10秒前
Alex应助科研通管家采纳,获得20
11秒前
gkads应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
火火发布了新的文献求助10
11秒前
Trinka完成签到,获得积分10
13秒前
JamesPei应助zhuxiaoyue采纳,获得10
14秒前
顺心的笑珊完成签到,获得积分10
17秒前
羞涩的傲菡完成签到,获得积分10
21秒前
23秒前
脑洞疼应助顺心的笑珊采纳,获得10
24秒前
28秒前
冷艳的语雪完成签到 ,获得积分10
29秒前
Amelie完成签到 ,获得积分10
30秒前
songshuyu完成签到,获得积分10
32秒前
沧海静音发布了新的文献求助10
32秒前
33秒前
浮游应助Hector采纳,获得10
37秒前
ZB完成签到,获得积分10
38秒前
科研通AI6应助尊敬的便当采纳,获得10
39秒前
dadadsad完成签到,获得积分10
42秒前
43秒前
kentonchow应助mmyhn采纳,获得30
43秒前
43秒前
三泥完成签到,获得积分10
47秒前
麦乐酷发布了新的文献求助10
47秒前
大个应助白杨采纳,获得10
47秒前
刘海清发布了新的文献求助10
48秒前
51秒前
imprint完成签到 ,获得积分10
52秒前
53秒前
很酷的妞子完成签到 ,获得积分10
53秒前
shushu完成签到 ,获得积分10
53秒前
yaolei完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528