Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
1秒前
4秒前
niNe3YUE应助zhoumaoyuan采纳,获得10
6秒前
8秒前
10秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
11秒前
Jenny发布了新的文献求助10
12秒前
fzh发布了新的文献求助10
15秒前
15秒前
16秒前
19秒前
KYTYYDS发布了新的文献求助10
20秒前
HanluMa完成签到 ,获得积分10
20秒前
fzh完成签到,获得积分10
24秒前
Jenny完成签到,获得积分10
26秒前
伟立完成签到,获得积分10
26秒前
33秒前
34秒前
然12138完成签到 ,获得积分10
34秒前
香蕉觅云应助SnownS采纳,获得10
34秒前
川荣李奈完成签到 ,获得积分10
38秒前
xinbowey发布了新的文献求助10
38秒前
火星上向珊完成签到,获得积分10
41秒前
43秒前
柳条儿完成签到,获得积分10
43秒前
如意幻枫完成签到,获得积分10
47秒前
48秒前
48秒前
渔婆发布了新的文献求助10
49秒前
51秒前
风趣的泥猴桃完成签到 ,获得积分10
52秒前
52秒前
zgsjymysmyy发布了新的文献求助30
53秒前
fuchao完成签到,获得积分10
53秒前
牧谷发布了新的文献求助10
54秒前
好吃的火龙果完成签到 ,获得积分10
55秒前
天边发布了新的文献求助10
56秒前
东方越彬发布了新的文献求助10
57秒前
赘婿应助sunny采纳,获得10
57秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566