Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助陈昭琼采纳,获得10
2秒前
小路完成签到 ,获得积分10
3秒前
Jally完成签到 ,获得积分10
3秒前
刘志萍完成签到 ,获得积分10
4秒前
11235完成签到,获得积分0
4秒前
7秒前
南吕十八发布了新的文献求助10
7秒前
brown完成签到,获得积分10
7秒前
8秒前
zy发布了新的文献求助10
11秒前
丘比特应助科研通管家采纳,获得30
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
13秒前
15秒前
南吕十八完成签到,获得积分10
15秒前
五月完成签到 ,获得积分10
17秒前
18秒前
Breeze01完成签到,获得积分10
21秒前
搞不动科研完成签到,获得积分10
22秒前
dada完成签到,获得积分10
22秒前
hadfunsix完成签到 ,获得积分10
22秒前
糖醋哈密瓜完成签到,获得积分10
23秒前
一个兴趣使然的人完成签到,获得积分10
24秒前
Ray完成签到,获得积分10
25秒前
李木子完成签到 ,获得积分10
26秒前
今后应助zy采纳,获得10
27秒前
牛顿的苹果完成签到 ,获得积分10
28秒前
28秒前
Galaxee完成签到 ,获得积分10
29秒前
30秒前
邱佩群完成签到 ,获得积分10
31秒前
莫封叶完成签到,获得积分10
31秒前
JJ完成签到,获得积分10
32秒前
金色天际线完成签到,获得积分10
32秒前
归玖发布了新的文献求助10
34秒前
34秒前
不想长大发布了新的文献求助10
34秒前
无限的含羞草完成签到,获得积分10
35秒前
猩猩完成签到,获得积分10
35秒前
嘤鸣完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603497
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14853964
捐赠科研通 4693022
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471781