亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mogekkko完成签到,获得积分10
19秒前
FY完成签到 ,获得积分10
26秒前
康康完成签到 ,获得积分10
31秒前
31秒前
Hyh_发布了新的文献求助10
36秒前
Ava应助Jason采纳,获得10
1分钟前
深情安青应助zzz采纳,获得10
1分钟前
科目三应助MIN采纳,获得10
1分钟前
zzz完成签到,获得积分10
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
litieniu完成签到 ,获得积分10
1分钟前
mmyhn发布了新的文献求助10
2分钟前
活力南露应助MOMO采纳,获得10
2分钟前
SciGPT应助biubiu26采纳,获得10
2分钟前
酷波er应助星尘0314采纳,获得10
2分钟前
2分钟前
biubiu26发布了新的文献求助10
2分钟前
2分钟前
sunfield2014完成签到 ,获得积分10
2分钟前
xxfsx应助biubiu26采纳,获得10
2分钟前
2分钟前
楠楠2001完成签到 ,获得积分10
2分钟前
Jason发布了新的文献求助10
2分钟前
wanci应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
4分钟前
星尘0314发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Akim应助星尘0314采纳,获得10
4分钟前
ZJY完成签到 ,获得积分10
4分钟前
科研小南完成签到 ,获得积分10
5分钟前
Jason完成签到,获得积分10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
ZanE完成签到,获得积分10
5分钟前
Jiang完成签到,获得积分20
5分钟前
Jason发布了新的文献求助10
5分钟前
谦让的鱼完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459211
求助须知:如何正确求助?哪些是违规求助? 4564918
关于积分的说明 14297309
捐赠科研通 4490019
什么是DOI,文献DOI怎么找? 2459491
邀请新用户注册赠送积分活动 1449140
关于科研通互助平台的介绍 1424640