Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: research based on the SEER database

医学 内科学 转移 脑转移 接收机工作特性 单变量 肿瘤科 阶段(地层学) 逻辑回归 多元分析 骨转移 肺癌 恶性肿瘤 癌症 列线图 多元统计 机器学习 古生物学 计算机科学 生物
作者
Zikai Lin,Runchen Wang,Youtao Zhou,Qixia Wang,Cui-Yan Yang,Bo-Cun Hao,Chuanfeng Ke
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:10 (1): 16-16 被引量:18
标识
DOI:10.21037/atm-21-6295
摘要

Gastric cancer (GC) is a globally important disease. It is the 5th most common malignancy and the 4th most common cause of death from cancer in the world. Patients with GC are often at an advanced stage when they are first diagnosed, and their overall prognosis is poor due to locally advanced and distant metastasis. This study sought to establish a predictive model of GC distant metastasis and survival that can be used to guide individualized treatment.Patients diagnosed with GC from the Surveillance, Epidemiology, and End Results database were enrolled in the study. Univariate and multivariate logistic regression analyses were used to identify risk and prognostic factors for GC patients with distant metastasis. The factors were then used to construct nomograms to predict the probability of distant metastasis and the survival time of GC patients. Receiver operating characteristic (ROC) curve and decision curve analyses were used to verify the prediction ability of the nomograms.We established a comprehensive nomogram to predict the survival time of GC patients and 4 nomograms to predict distant metastasis. Nomograms could help oncologists to formulate treatment strategies and provide hospice care under an overall management model.Establishing a prediction model for distant metastasis and the survival of GC patients is of great clinical significance. The prediction of distant metastasis could help clinicians to make individualized assessments of patients and formulate individualized examination measures. Survival prediction models could help oncologists to formulate good treatment strategies and provide hospice care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雨姐科研应助S1mple采纳,获得10
1秒前
1秒前
CodeCraft应助艾永涛采纳,获得10
1秒前
1秒前
4秒前
4秒前
4秒前
整齐醉冬发布了新的文献求助10
4秒前
hrbykdxly发布了新的文献求助10
4秒前
JinghaoLi完成签到 ,获得积分10
5秒前
808bass应助Jason采纳,获得10
5秒前
苏苏完成签到,获得积分10
5秒前
5秒前
山山以川发布了新的文献求助10
6秒前
ly浩发布了新的文献求助10
6秒前
小号完成签到,获得积分10
6秒前
Jackpot完成签到 ,获得积分10
6秒前
南宫书芹完成签到,获得积分10
8秒前
Bob完成签到,获得积分10
9秒前
9秒前
Orange应助icecream采纳,获得10
9秒前
英姑应助YangYang666采纳,获得10
10秒前
梗梗发布了新的文献求助10
11秒前
天才玩家H完成签到,获得积分10
11秒前
自然画笔发布了新的文献求助10
12秒前
12秒前
隐形曼青应助依古比古采纳,获得10
13秒前
13秒前
科研通AI6应助123采纳,获得10
13秒前
13秒前
13秒前
14秒前
南宫书芹发布了新的文献求助10
14秒前
在水一方应助害羞含雁采纳,获得10
14秒前
15秒前
漂泊完成签到,获得积分10
15秒前
清爽的诗云完成签到,获得积分10
16秒前
16秒前
太阳雨完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488