ES-DQN: A Learning Method for Vehicle Intelligent Speed Control Strategy Under Uncertain Cut-In Scenario

计算机科学 控制(管理) 人工智能 控制工程 汽车工程 工程类 控制理论(社会学)
作者
Qingyun Chen,Wanzhong Zhao,Lin Li,Chunyan Wang,Feng Chen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 2472-2484 被引量:16
标识
DOI:10.1109/tvt.2022.3143840
摘要

Uncertain cut-in maneuver of vehicles from adjacent lanes makes it difficult for vehicle's automatic speed control strategy to make judgments and effective control decisions. In this paper, an intelligent speed control strategy for uncertain cut-in scenarios is established based on a basic autonomous driving system. This strategy judges cut-in maneuver from surrounding vehicles and outputs adaptive control action under current environment according to Q value of state-action pair based on a Q network. In addition, according to the analysis of cut-in scenarios, the Q network is trained based on a novel reinforcement learning method named as experience screening deep Q-learning network (ES-DQN). The proposed ES-DQN is an extension of double deep Q-learning network (DDQN) algorithm, and includes two parts: experience screening and policy learning. Based on the experience screened from the experience screening part, the proposed learning method can train an intelligent speed control strategy which has stronger adaptability and control effect in uncertain cut-in scenarios. According to simulation results, the proposed intelligent speed control strategy trained by ES-DQN has better performance under uncertain cut-in scenarios than DDQN method and traditional ACC strategy. Meanwhile, by adjusting weight value in reward function, the system can realize different control target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶斯发布了新的文献求助10
刚刚
镕臻完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI5应助斡隑盄赵采纳,获得30
1秒前
1秒前
汪汪发布了新的文献求助10
2秒前
CodeCraft应助wddytc采纳,获得30
3秒前
红黄蓝完成签到 ,获得积分0
3秒前
情怀应助小小娜采纳,获得10
3秒前
英勇的沛春完成签到 ,获得积分10
4秒前
xiaoting发布了新的文献求助10
4秒前
Lazure完成签到 ,获得积分10
5秒前
华仔应助fan采纳,获得10
5秒前
之恒发布了新的文献求助30
6秒前
6秒前
潇洒慕卉完成签到,获得积分10
6秒前
lastxuan发布了新的文献求助30
7秒前
seven765发布了新的文献求助30
7秒前
8秒前
深情安青应助默默采纳,获得30
8秒前
weiv完成签到,获得积分10
8秒前
9秒前
888完成签到 ,获得积分10
9秒前
春困秋乏发布了新的文献求助10
10秒前
mm完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
鹿乃完成签到,获得积分10
13秒前
隐形曼青应助乔治采纳,获得10
13秒前
苡若发布了新的文献求助10
14秒前
磐沙完成签到,获得积分10
14秒前
慢慢的地理人完成签到,获得积分10
15秒前
SciGPT应助zzyyzz采纳,获得30
15秒前
今后应助鹿人采纳,获得10
16秒前
16秒前
春困秋乏完成签到,获得积分10
16秒前
16秒前
MRshenyy完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191804
求助须知:如何正确求助?哪些是违规求助? 4374941
关于积分的说明 13623067
捐赠科研通 4229024
什么是DOI,文献DOI怎么找? 2319649
邀请新用户注册赠送积分活动 1318264
关于科研通互助平台的介绍 1268337