ES-DQN: A Learning Method for Vehicle Intelligent Speed Control Strategy Under Uncertain Cut-In Scenario

计算机科学 控制(管理) 人工智能 控制工程 汽车工程 工程类 控制理论(社会学)
作者
Qingyun Chen,Wanzhong Zhao,Lin Li,Chunyan Wang,Feng Chen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 2472-2484 被引量:16
标识
DOI:10.1109/tvt.2022.3143840
摘要

Uncertain cut-in maneuver of vehicles from adjacent lanes makes it difficult for vehicle's automatic speed control strategy to make judgments and effective control decisions. In this paper, an intelligent speed control strategy for uncertain cut-in scenarios is established based on a basic autonomous driving system. This strategy judges cut-in maneuver from surrounding vehicles and outputs adaptive control action under current environment according to Q value of state-action pair based on a Q network. In addition, according to the analysis of cut-in scenarios, the Q network is trained based on a novel reinforcement learning method named as experience screening deep Q-learning network (ES-DQN). The proposed ES-DQN is an extension of double deep Q-learning network (DDQN) algorithm, and includes two parts: experience screening and policy learning. Based on the experience screened from the experience screening part, the proposed learning method can train an intelligent speed control strategy which has stronger adaptability and control effect in uncertain cut-in scenarios. According to simulation results, the proposed intelligent speed control strategy trained by ES-DQN has better performance under uncertain cut-in scenarios than DDQN method and traditional ACC strategy. Meanwhile, by adjusting weight value in reward function, the system can realize different control target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffffffff完成签到,获得积分10
1秒前
2秒前
3秒前
梦桃发布了新的文献求助10
3秒前
3秒前
威武从霜发布了新的文献求助10
4秒前
shao应助宇文沛岚采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
echo发布了新的文献求助10
5秒前
掌灯师发布了新的文献求助150
5秒前
5秒前
打打应助ysw采纳,获得10
5秒前
xzx发布了新的文献求助10
6秒前
6秒前
学术蟑螂完成签到,获得积分10
7秒前
qinqiny完成签到 ,获得积分10
7秒前
华仔应助猪猪侠采纳,获得10
8秒前
小蘑菇应助姐姐采纳,获得10
8秒前
9秒前
9秒前
PJ完成签到,获得积分10
10秒前
10秒前
可爱的函函应助echo采纳,获得10
11秒前
果汁豆浆完成签到,获得积分10
11秒前
科研通AI2S应助dream采纳,获得10
11秒前
在水一方应助hkh采纳,获得10
12秒前
12秒前
小郭发布了新的文献求助10
12秒前
博修发布了新的文献求助10
12秒前
13秒前
今后应助白衣轻叹采纳,获得10
13秒前
孟孟完成签到,获得积分10
13秒前
13秒前
14秒前
juanwu发布了新的文献求助10
14秒前
3080642743发布了新的文献求助10
14秒前
可爱的函函应助梦桃采纳,获得10
14秒前
15秒前
doge完成签到,获得积分20
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281