Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals

计算机科学 卷积神经网络 脑电图 模式识别(心理学) 人工智能 预处理器 信号(编程语言) 脑-机接口 语音识别 心理学 精神科 程序设计语言
作者
Sara Bagherzadeh,Keivan Maghooli,Ahmad Shalbaf,Arash Maghsoudi
出处
期刊:Cognitive Neurodynamics [Springer Nature]
卷期号:16 (5): 1087-1106 被引量:26
标识
DOI:10.1007/s11571-021-09756-0
摘要

Convolutional Neural Networks (CNN) have recently made considerable advances in the field of biomedical signal processing. These methodologies can assist in emotion recognition for affective brain computer interface. In this paper, a novel emotion recognition system based on the effective connectivity and the fine-tuned CNNs from multichannel Electroencephalogram (EEG) signal is presented. After preprocessing EEG signals, the relationships among 32 channels of EEG in the form of effective brain connectivity analysis which represents information flow between regions are computed by direct Directed Transfer Function (dDTF) method which yields a 32*32 image. Then, these constructed images from EEG signals for each subject were fed as input to four versions of pre-trained CNN models, AlexNet, ResNet-50, Inception-v3 and VGG-19 and the parameters of these models are fine-tuned, independently. The proposed deep learning architectures automatically learn patterns in the constructed image of the EEG signals in frequency bands. The efficiency of the proposed approach is evaluated on MAHNOB-HCI and DEAP databases. The experiments for classifying five emotional states show that the ResNet-50 applied on dDTF images in alpha band achieves best results due to specific architecture which captures the brain connectivity, efficiently. The accuracy and F1-score values for MAHNOB-HCI were obtained 99.41, 99.42 and for DEAP databases, 98.17, and 98.23. Newly proposed model is capable of effectively analyzing the brain function using information flow from multichannel EEG signals using effective connectivity measure of dDTF and ResNet-50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白三烯发布了新的文献求助10
1秒前
爱静静应助李w采纳,获得10
1秒前
爱静静应助dwj采纳,获得10
1秒前
优雅的母鸡发布了新的文献求助110
1秒前
鲸鱼发布了新的文献求助10
2秒前
Alexander L发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
执着应助去海边吗采纳,获得10
4秒前
科研废物发布了新的文献求助10
5秒前
GAOYI完成签到,获得积分10
6秒前
Cris完成签到,获得积分10
8秒前
8秒前
王云豆发布了新的文献求助10
8秒前
emm发布了新的文献求助10
10秒前
乘云发布了新的文献求助10
10秒前
11秒前
爱静静应助跳跃若风采纳,获得10
12秒前
爱静静应助跳跃若风采纳,获得10
12秒前
12秒前
12秒前
ShiYanYang完成签到,获得积分10
13秒前
小瓦片完成签到,获得积分10
14秒前
NeXt_best完成签到,获得积分10
14秒前
NexusExplorer应助清净163采纳,获得20
15秒前
15秒前
SciGPT应助王云豆采纳,获得10
16秒前
17秒前
17秒前
17秒前
酷波er应助幸福大白采纳,获得10
18秒前
18秒前
黄晟钊发布了新的文献求助30
21秒前
黑囡应助关卉采纳,获得10
23秒前
灵巧高山应助小幻采纳,获得60
23秒前
25秒前
Orange应助无情的宛儿采纳,获得10
25秒前
英俊的铭应助高天雨采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737