Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning

医学 卷积神经网络 脊髓损伤 矢状面 磁共振成像 深度学习 脊髓 物理医学与康复 机器学习 物理疗法 放射科 计算机科学 精神科
作者
Sho Okimatsu,Satoshi Maki,Takeo Furuya,Takayuki Fujiyoshi,Mitsuhiro Kitamura,Taigo Inada,Masaaki Aramomi,Tomonori Yamauchi,Takuya Miyamoto,Takaki Inoue,Atsushi Yunde,Masataka Miura,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Seiji Ohtori
出处
期刊:Journal of Clinical Neuroscience [Elsevier BV]
卷期号:96: 74-79 被引量:22
标识
DOI:10.1016/j.jocn.2021.11.037
摘要

It is challenging to predict neurological outcomes of acute spinal cord injury (SCI) considering issues such as spinal shock and injury heterogeneity. Deep learning-based radiomics (DLR) were developed to quantify the radiographic characteristics automatically using a convolutional neural network (CNN), and to potentially allow the prognostic stratification of patients. We aimed to determine the functional prognosis of patients with cervical SCI using machine learning approach based on MRI and to assess the ability to predict the neurological outcomes. We retrospectively analyzed the medical records of SCI patients (n=215) who had undergone MRI and had an American Spinal cord Injury Association Impairment Scale (AIS) assessment at 1 month after injury, enrolled with a total of 294 MR images. Sagittal T2-weighted MR images were used for the CNN training and validation. The deep learning framework TensorFlow was used to construct the CNN architecture. After we calculated the probability of the AIS grade using the DLR, we built the identification model based upon the random forest using 3 features: the probability of each AIS grade obtained by the DLR method, age, and the initial AIS grade at admission. We performed a statistical evaluation between the actual and predicted AIS. The accuracy, precision, recall and f1 score of the ensemble model based on the DLR and RF were 0.714, 0.590, 0.565 and 0.567, respectively. The present study demonstrates that prediction of the short-term neurological outcomes for acute cervical spinal cord injury based on MRI using machine learning is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哈哈哈完成签到,获得积分10
1秒前
天天快乐应助茜茜哥哥采纳,获得10
2秒前
青青草完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
dlch发布了新的文献求助10
4秒前
开心雪卉发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
科研通AI5应助斯文的斩采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
6秒前
Kismet完成签到,获得积分10
6秒前
David发布了新的文献求助10
8秒前
情怀应助33333采纳,获得10
10秒前
博弈春秋发布了新的文献求助150
10秒前
糊涂的电脑完成签到 ,获得积分10
11秒前
闪闪跳跳糖完成签到,获得积分10
11秒前
镜哥完成签到,获得积分10
12秒前
12秒前
mariawang发布了新的文献求助10
13秒前
13秒前
14秒前
Nayvue完成签到,获得积分10
15秒前
16秒前
17秒前
David完成签到,获得积分20
17秒前
南十八发布了新的文献求助10
19秒前
傲娇书萱完成签到,获得积分10
19秒前
wq发布了新的文献求助10
19秒前
kunkun完成签到,获得积分10
20秒前
ni发布了新的文献求助10
20秒前
张耀文发布了新的文献求助10
20秒前
21秒前
搜集达人应助霍比特人采纳,获得10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020