Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning

医学 卷积神经网络 脊髓损伤 矢状面 磁共振成像 深度学习 脊髓 物理医学与康复 机器学习 物理疗法 放射科 计算机科学 精神科
作者
Sho Okimatsu,Satoshi Maki,Takeo Furuya,Takayuki Fujiyoshi,Mitsuhiro Kitamura,Taigo Inada,Masaaki Aramomi,Tomonori Yamauchi,Takuya Miyamoto,Takaki Inoue,Atsushi Yunde,Masataka Miura,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Seiji Ohtori
出处
期刊:Journal of Clinical Neuroscience [Elsevier BV]
卷期号:96: 74-79 被引量:22
标识
DOI:10.1016/j.jocn.2021.11.037
摘要

It is challenging to predict neurological outcomes of acute spinal cord injury (SCI) considering issues such as spinal shock and injury heterogeneity. Deep learning-based radiomics (DLR) were developed to quantify the radiographic characteristics automatically using a convolutional neural network (CNN), and to potentially allow the prognostic stratification of patients. We aimed to determine the functional prognosis of patients with cervical SCI using machine learning approach based on MRI and to assess the ability to predict the neurological outcomes. We retrospectively analyzed the medical records of SCI patients (n=215) who had undergone MRI and had an American Spinal cord Injury Association Impairment Scale (AIS) assessment at 1 month after injury, enrolled with a total of 294 MR images. Sagittal T2-weighted MR images were used for the CNN training and validation. The deep learning framework TensorFlow was used to construct the CNN architecture. After we calculated the probability of the AIS grade using the DLR, we built the identification model based upon the random forest using 3 features: the probability of each AIS grade obtained by the DLR method, age, and the initial AIS grade at admission. We performed a statistical evaluation between the actual and predicted AIS. The accuracy, precision, recall and f1 score of the ensemble model based on the DLR and RF were 0.714, 0.590, 0.565 and 0.567, respectively. The present study demonstrates that prediction of the short-term neurological outcomes for acute cervical spinal cord injury based on MRI using machine learning is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
搜集达人应助一只雪兔子采纳,获得10
刚刚
最终幻想完成签到,获得积分10
刚刚
lilili6666发布了新的文献求助10
刚刚
Curry完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
在水一方应助RATHER采纳,获得10
1秒前
YZHSCI888发布了新的文献求助10
1秒前
2秒前
CipherSage应助大写的笨采纳,获得10
2秒前
dzjin发布了新的文献求助10
2秒前
ww发布了新的文献求助10
3秒前
zzzzZ12138发布了新的文献求助30
4秒前
4秒前
悦耳伊发布了新的文献求助10
5秒前
5秒前
memedaaaah发布了新的文献求助10
5秒前
张杰发布了新的文献求助10
5秒前
5秒前
6秒前
一篇吃不饱完成签到,获得积分10
6秒前
共享精神应助摸鱼大王采纳,获得10
7秒前
7秒前
7秒前
7秒前
今后应助灰灰成长中采纳,获得10
7秒前
浮游应助活泼啤酒采纳,获得10
8秒前
飞飞鱼完成签到,获得积分10
8秒前
shirly发布了新的文献求助30
8秒前
FashionBoy应助坦率的夜玉采纳,获得10
8秒前
无极微光应助庄严采纳,获得20
9秒前
zgf完成签到 ,获得积分10
9秒前
星辰大海应助潆星采纳,获得10
9秒前
科研小趴菜完成签到,获得积分10
9秒前
满意的砖头完成签到,获得积分10
9秒前
Jasper应助悦耳的听双采纳,获得10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701