Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning

医学 卷积神经网络 脊髓损伤 矢状面 磁共振成像 深度学习 脊髓 物理医学与康复 机器学习 物理疗法 放射科 计算机科学 精神科
作者
Sho Okimatsu,Satoshi Maki,Takeo Furuya,Takayuki Fujiyoshi,Mitsuhiro Kitamura,Taigo Inada,Masaaki Aramomi,Tomonori Yamauchi,Takuya Miyamoto,Takaki Inoue,Atsushi Yunde,Masataka Miura,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Seiji Ohtori
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:96: 74-79 被引量:17
标识
DOI:10.1016/j.jocn.2021.11.037
摘要

It is challenging to predict neurological outcomes of acute spinal cord injury (SCI) considering issues such as spinal shock and injury heterogeneity. Deep learning-based radiomics (DLR) were developed to quantify the radiographic characteristics automatically using a convolutional neural network (CNN), and to potentially allow the prognostic stratification of patients. We aimed to determine the functional prognosis of patients with cervical SCI using machine learning approach based on MRI and to assess the ability to predict the neurological outcomes. We retrospectively analyzed the medical records of SCI patients (n=215) who had undergone MRI and had an American Spinal cord Injury Association Impairment Scale (AIS) assessment at 1 month after injury, enrolled with a total of 294 MR images. Sagittal T2-weighted MR images were used for the CNN training and validation. The deep learning framework TensorFlow was used to construct the CNN architecture. After we calculated the probability of the AIS grade using the DLR, we built the identification model based upon the random forest using 3 features: the probability of each AIS grade obtained by the DLR method, age, and the initial AIS grade at admission. We performed a statistical evaluation between the actual and predicted AIS. The accuracy, precision, recall and f1 score of the ensemble model based on the DLR and RF were 0.714, 0.590, 0.565 and 0.567, respectively. The present study demonstrates that prediction of the short-term neurological outcomes for acute cervical spinal cord injury based on MRI using machine learning is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bkagyin应助crystal采纳,获得10
1秒前
王路宽完成签到,获得积分10
1秒前
彩色莞完成签到 ,获得积分10
2秒前
姜博超完成签到,获得积分20
2秒前
领导范儿应助SYUE采纳,获得10
2秒前
三千世界完成签到,获得积分10
2秒前
香蕉子骞发布了新的文献求助10
2秒前
单纯的勒完成签到 ,获得积分10
4秒前
4秒前
莫莫莫莫几完成签到,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
忧郁绣连应助科研通管家采纳,获得50
5秒前
orixero应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
忧郁绣连应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
张演基发布了新的文献求助20
6秒前
Hello应助科研通管家采纳,获得10
6秒前
忧郁绣连应助科研通管家采纳,获得10
6秒前
坦率无剑完成签到,获得积分10
6秒前
whatever应助搬石头采纳,获得30
7秒前
7秒前
8秒前
小二郎应助babsonder采纳,获得10
9秒前
LeuinPonsgi完成签到,获得积分10
10秒前
清爽翠丝完成签到,获得积分10
10秒前
leyellows完成签到,获得积分10
11秒前
11秒前
11秒前
端庄的正豪完成签到,获得积分10
11秒前
帅气咖啡关注了科研通微信公众号
12秒前
佩楠完成签到,获得积分10
12秒前
魔幻若血发布了新的文献求助10
13秒前
哒哒发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419