Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning

医学 卷积神经网络 脊髓损伤 矢状面 磁共振成像 深度学习 脊髓 物理医学与康复 机器学习 物理疗法 放射科 计算机科学 精神科
作者
Sho Okimatsu,Satoshi Maki,Takeo Furuya,Takayuki Fujiyoshi,Mitsuhiro Kitamura,Taigo Inada,Masaaki Aramomi,Tomonori Yamauchi,Takuya Miyamoto,Takaki Inoue,Atsushi Yunde,Masataka Miura,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Seiji Ohtori
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:96: 74-79 被引量:22
标识
DOI:10.1016/j.jocn.2021.11.037
摘要

It is challenging to predict neurological outcomes of acute spinal cord injury (SCI) considering issues such as spinal shock and injury heterogeneity. Deep learning-based radiomics (DLR) were developed to quantify the radiographic characteristics automatically using a convolutional neural network (CNN), and to potentially allow the prognostic stratification of patients. We aimed to determine the functional prognosis of patients with cervical SCI using machine learning approach based on MRI and to assess the ability to predict the neurological outcomes. We retrospectively analyzed the medical records of SCI patients (n=215) who had undergone MRI and had an American Spinal cord Injury Association Impairment Scale (AIS) assessment at 1 month after injury, enrolled with a total of 294 MR images. Sagittal T2-weighted MR images were used for the CNN training and validation. The deep learning framework TensorFlow was used to construct the CNN architecture. After we calculated the probability of the AIS grade using the DLR, we built the identification model based upon the random forest using 3 features: the probability of each AIS grade obtained by the DLR method, age, and the initial AIS grade at admission. We performed a statistical evaluation between the actual and predicted AIS. The accuracy, precision, recall and f1 score of the ensemble model based on the DLR and RF were 0.714, 0.590, 0.565 and 0.567, respectively. The present study demonstrates that prediction of the short-term neurological outcomes for acute cervical spinal cord injury based on MRI using machine learning is feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
刚刚
陈涛发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
刚刚
su完成签到,获得积分10
1秒前
1秒前
lirongcas发布了新的文献求助10
1秒前
fanfanfan完成签到,获得积分10
1秒前
2秒前
3秒前
英俊亦巧发布了新的文献求助20
3秒前
卡布奇诺发布了新的文献求助10
4秒前
chengqum完成签到,获得积分10
4秒前
4秒前
123cvh发布了新的文献求助10
4秒前
zhao完成签到,获得积分10
4秒前
大模型应助zk200107采纳,获得10
4秒前
4秒前
5秒前
寻舟者发布了新的文献求助10
5秒前
5秒前
科研通AI6应助lulu采纳,获得10
5秒前
afrgerg完成签到,获得积分10
5秒前
内向冰绿完成签到 ,获得积分10
5秒前
热情香氛发布了新的文献求助10
6秒前
STNZEN发布了新的文献求助10
7秒前
lirongcas完成签到,获得积分10
7秒前
coc发布了新的文献求助10
7秒前
7秒前
ddddd完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
今后应助珍宝采纳,获得10
10秒前
ddddd发布了新的文献求助10
11秒前
筋筋子完成签到,获得积分10
11秒前
小盆呐发布了新的文献求助10
11秒前
新晋学术小生完成签到 ,获得积分10
11秒前
英俊的铭应助zhenglei9058采纳,获得10
11秒前
11秒前
陈哈哈发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049