CIMFNet: Cross-Layer Interaction and Multiscale Fusion Network for Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 增采样 分割 人工智能 联营 特征(语言学) 模式识别(心理学) 背景(考古学) 棱锥(几何) 水准点(测量) 机器学习 图像(数学) 光学 物理 哲学 古生物学 生物 地理 语言学 大地测量学
作者
Wujie Zhou,Jin Jianhui,Jingsheng Lei,Lu Yu
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 666-676 被引量:48
标识
DOI:10.1109/jstsp.2022.3159032
摘要

Semantic segmentation of remote sensing images has received increasing attention in recent years; however, using a single imaging modality limits the segmentation performance. Thus, digital surface models have been integrated into semantic segmentation to improve performance. Nevertheless, existing methods based on neural networks simply combine data from the two modalities, mostly neglecting the similarities and differences between multimodal features. Consequently, the complementarity between multimodal features cannot be exploited, and excess noise is introduced during feature processing. To solve these problems, we propose a multimodal fusion module to explore the similarities and differences between features from the two information modalities for adequate fusion. In addition, although downsampling operations such as pooling and striding can improve the feature representativeness, they discard spatial details and often lead to segmentation errors. Thus, we introduce hierarchical feature interactions to mitigate the adverse effects of downsampling and introduce a two-way interactive pyramid pooling module to extract multiscale context features for guiding feature fusion. Extensive experiments performed on two benchmark datasets show that the proposed network integrating our novel modules substantially outperforms state-of-the-art semantic segmentation methods. The code and results can be found at https://github.com/NIT-JJH/CIMFNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenzhou9发布了新的文献求助10
1秒前
2秒前
十三完成签到,获得积分10
3秒前
CiCi应助雨落瑾年采纳,获得10
3秒前
light完成签到 ,获得积分10
3秒前
大模型应助聆听采纳,获得10
3秒前
sff完成签到,获得积分10
5秒前
guojingjing发布了新的文献求助10
5秒前
5秒前
又见三皮完成签到,获得积分10
7秒前
一行白鹭上青天完成签到 ,获得积分10
7秒前
zzz完成签到,获得积分10
7秒前
shenzhou9完成签到,获得积分10
7秒前
灰色与青完成签到,获得积分10
10秒前
zhuww完成签到,获得积分10
10秒前
Answer完成签到,获得积分10
11秒前
Akim应助苦酷采纳,获得10
11秒前
zvk完成签到,获得积分10
11秒前
十六完成签到,获得积分10
12秒前
12秒前
直率一刀发布了新的文献求助30
12秒前
zho应助科研如喝水采纳,获得10
13秒前
岚12完成签到 ,获得积分10
14秒前
镜哥完成签到,获得积分10
14秒前
机智幻嫣应助19111867526采纳,获得10
14秒前
sssss应助keyan123采纳,获得10
16秒前
Eason完成签到 ,获得积分10
16秒前
NIHAO213发布了新的文献求助10
18秒前
嘒彼小星完成签到 ,获得积分10
19秒前
1234567xjy完成签到,获得积分10
20秒前
难过大白完成签到 ,获得积分10
21秒前
24秒前
27秒前
Milton_z完成签到 ,获得积分10
27秒前
雨落瑾年完成签到,获得积分10
30秒前
酷波er应助yiyimx采纳,获得10
30秒前
31秒前
31秒前
苦酷发布了新的文献求助10
32秒前
tzjz_zrz完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093