CIMFNet: Cross-Layer Interaction and Multiscale Fusion Network for Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 增采样 分割 人工智能 联营 特征(语言学) 模式识别(心理学) 背景(考古学) 棱锥(几何) 水准点(测量) 机器学习 图像(数学) 光学 物理 哲学 古生物学 生物 地理 语言学 大地测量学
作者
Wujie Zhou,Jin Jianhui,Jingsheng Lei,Lu Yu
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 666-676 被引量:48
标识
DOI:10.1109/jstsp.2022.3159032
摘要

Semantic segmentation of remote sensing images has received increasing attention in recent years; however, using a single imaging modality limits the segmentation performance. Thus, digital surface models have been integrated into semantic segmentation to improve performance. Nevertheless, existing methods based on neural networks simply combine data from the two modalities, mostly neglecting the similarities and differences between multimodal features. Consequently, the complementarity between multimodal features cannot be exploited, and excess noise is introduced during feature processing. To solve these problems, we propose a multimodal fusion module to explore the similarities and differences between features from the two information modalities for adequate fusion. In addition, although downsampling operations such as pooling and striding can improve the feature representativeness, they discard spatial details and often lead to segmentation errors. Thus, we introduce hierarchical feature interactions to mitigate the adverse effects of downsampling and introduce a two-way interactive pyramid pooling module to extract multiscale context features for guiding feature fusion. Extensive experiments performed on two benchmark datasets show that the proposed network integrating our novel modules substantially outperforms state-of-the-art semantic segmentation methods. The code and results can be found at https://github.com/NIT-JJH/CIMFNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
无花果应助王羊补牢采纳,获得10
4秒前
4秒前
白桃小罐头完成签到,获得积分10
6秒前
SHANEE发布了新的文献求助10
7秒前
安静书雁发布了新的文献求助30
7秒前
领导范儿应助Liangyu采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
淡然的书蝶完成签到,获得积分10
13秒前
研友_Z11kkZ完成签到,获得积分20
13秒前
277完成签到 ,获得积分10
15秒前
博修发布了新的文献求助10
15秒前
15秒前
15秒前
安静书雁完成签到,获得积分10
16秒前
线条应助科研通管家采纳,获得10
16秒前
Dada应助科研通管家采纳,获得30
16秒前
103921wjk完成签到,获得积分10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
NL14D驳回了hz52应助
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
hi应助科研通管家采纳,获得10
17秒前
17秒前
saberLee完成签到,获得积分10
17秒前
17秒前
17秒前
缺了一口的巧克力蛋挞完成签到,获得积分10
19秒前
20秒前
枝枝完成签到 ,获得积分10
22秒前
爆米花应助嗯嗯采纳,获得10
23秒前
充电宝应助若杉采纳,获得10
26秒前
26秒前
材料若饥发布了新的文献求助50
26秒前
李ye完成签到,获得积分10
28秒前
馒头完成签到,获得积分20
29秒前
CipherSage应助独特凡松采纳,获得10
29秒前
慕青应助科研苦行僧采纳,获得20
34秒前
35秒前
随遇而安完成签到,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150