雅可比特征值算法
算法
雅可比法
加速度
特征向量
到达方向
计算机科学
厄米矩阵
基质(化学分析)
矩阵的特征分解
基础(线性代数)
数学
应用数学
纯数学
电信
物理
材料科学
经典力学
量子力学
天线(收音机)
复合材料
几何学
作者
Zeying Li,Weijiang Wang,Rongkun Jiang,Shiwei Ren,Xiaohua Wang,Chengbo Xue
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers
[Institute of Electrical and Electronics Engineers]
日期:2022-03-31
卷期号:69 (7): 2941-2954
被引量:11
标识
DOI:10.1109/tcsi.2022.3162303
摘要
Multiple Signal Classification (MUSIC) is a high-performance Direction of Arrival (DOA) estimation algorithm, which has been widely used. The algorithm needs to calculate the covariance matrix, eigenvalue decomposition and spectral peak search. In the paper, the hardware structure of the existing Jacobi algorithm for Hermitian matrices is proposed. On this basis, a novel hardware acceleration of the MUSIC algorithm for sparse arrays and uniform linear arrays is proposed, and the sparse array is a nested array. There are two designs, Design 1 supports 1~10 nested array elements or 1~32 uniform linear array elements, distinguishes 1~32 sources, configures snapshots 1~2048, and the maximum number of iterations and iteration accuracy of the complex Jacobi algorithm. Design 2 only needs $101.8~\mu $ s to complete a DOA estimation when the number of array elements is 8, the number of sources is 1, and the snapshots is 128. In more detail, the Root Mean Squared Error (RMSE) of both can reach 0.03°. The logic resources on the Zynq-7000 development board are 14,761 and 28,305 Look-Up Tables (LUTs), respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI