Nonparametric monitoring of sunspot number observations

库苏姆 非参数统计 统计 平滑的 背景(考古学) 计算机科学 航程(航空) 太阳黑子 块(置换群论) 鉴定(生物学) 太阳辐照度 数学 数据挖掘 气象学 地理 几何学 植物 材料科学 考古 复合材料 物理 磁场 生物 量子力学
作者
Sophie Mathieu,Laure Lefèvre,Rainer von Sachs,Véronique Delouille,Christian Ritter,Frédéric Clette
出处
期刊:Journal of Quality Technology [Informa]
卷期号:55 (1): 104-118 被引量:2
标识
DOI:10.1080/00224065.2022.2041376
摘要

Solar activity is an important driver of long-term climate trends and must be accounted for in climate models. Unfortunately, direct measurements of this quantity over long periods do not exist. The only observation related to solar activity whose records reach back to the seventeenth century are sunspots. Surprisingly, determining the number of sunspots consistently over time has remained until today a challenging statistical problem. It arises from the need of consolidating data from multiple observing stations around the world in a context of low signal-to-noise ratios, non-stationarity, missing data, non-standard distributions and many kinds of errors. The data from some stations experience therefore severe and various deviations over time. In this paper, we propose the first systematic and thorough statistical approach for monitoring these complex and important series. It consists of three steps essential for successful treatment of the data: smoothing on multiple timescales, monitoring using block bootstrap calibrated CUSUM charts and classifying of out-of-control situations by support vector techniques. This approach allows us to detect a wide range of anomalies (such as sudden jumps or more progressive drifts), unseen in previous analyses. It helps us to identify the causes of major deviations, which are often observer or equipment related. Their detection and identification will contribute to improve future observations. Their elimination or correction in past data will lead to a more precise reconstruction of the world reference index for solar activity: the International Sunspot Number.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助子车雁开采纳,获得10
刚刚
归尘发布了新的文献求助20
1秒前
1秒前
1028181661发布了新的文献求助10
1秒前
2秒前
3秒前
菠萝菠萝哒应助XC采纳,获得30
3秒前
3秒前
晓畅发布了新的文献求助10
3秒前
公冶妙菱发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
烟花应助丛柳采纳,获得10
6秒前
蛋卷完成签到,获得积分10
7秒前
7秒前
Lucas应助ZJR采纳,获得10
7秒前
8秒前
嘉博学长发布了新的文献求助10
8秒前
小张发布了新的文献求助10
8秒前
彩色的怀柔完成签到,获得积分20
8秒前
洛神发布了新的文献求助10
9秒前
薛一刀发布了新的文献求助10
9秒前
可靠寒云完成签到,获得积分10
9秒前
zhy发布了新的文献求助10
10秒前
11秒前
12秒前
冰安发布了新的文献求助10
13秒前
ynn发布了新的文献求助10
13秒前
NexusExplorer应助木查不是猹采纳,获得10
14秒前
15秒前
15秒前
CWNU_HAN应助RoyKu采纳,获得30
15秒前
打打应助非鱼采纳,获得10
15秒前
16秒前
在水一方应助嘎嘎嘎嘎采纳,获得10
16秒前
18秒前
18秒前
18秒前
华仔应助科研通管家采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466055
求助须知:如何正确求助?哪些是违规求助? 3059037
关于积分的说明 9064416
捐赠科研通 2749410
什么是DOI,文献DOI怎么找? 1508522
科研通“疑难数据库(出版商)”最低求助积分说明 696949
邀请新用户注册赠送积分活动 696680