亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrochemical Impedance Spectroscopy Based State-of-Health Estimation for Lithium-Ion Battery Considering Temperature and State-of-Charge Effect

健康状况 荷电状态 介电谱 电池(电) 等效电路 锂离子电池 电阻抗 电解质 材料科学 电压 电子工程 计算机科学 功率(物理) 化学 电气工程 工程类 电化学 物理 电极 量子力学 物理化学
作者
Qunming Zhang,Cheng‐Geng Huang,He Li,Guodong Feng,Weiwen Peng
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (4): 4633-4645 被引量:174
标识
DOI:10.1109/tte.2022.3160021
摘要

State of health (SOH) is critical to the efficient and reliable use of lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications. Recently, electrochemical impedance spectroscopy (EIS)-based technique has been proven to be effective for SOH estimation of LIB. However, existing EIS-based methods failed to consider the impact of ambient temperature and battery state of charge (SOC), leading to the limited flexibility of these methods under dynamic environments. In this work, a novel EIS-based method is proposed for battery SOH estimation considering variations of temperature and SOC. An equivalent circuit model (ECM) is first introduced, in which the solid electrolyte interface (SEI) resistance and charge transfer resistance are employed to map their relationship with SOH under variant temperature and SOC. Subsequently, a probabilistic model, taking charge transfer resistance, temperature, and SOC as input variables, is developed for LIB SOH estimation. Experimental study indicates that the estimation error of the proposed method is around 4% when simultaneously considering the temperature and SOC effects. Moreover, the estimation error can reach 1.29% under certain conditions (e.g., 80% SOC at 30 °C). Both results of estimation error are better than the existing EIS-based methods, which indicates that the proposed method is more flexible for SOH estimation with higher precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
林强完成签到,获得积分10
1秒前
Liuxiaoliu完成签到 ,获得积分10
8秒前
11秒前
17秒前
swan完成签到 ,获得积分10
17秒前
xuyan发布了新的文献求助30
18秒前
21秒前
22秒前
五博发布了新的文献求助10
22秒前
kk完成签到,获得积分10
24秒前
TangSEU发布了新的文献求助10
25秒前
xiaohan,JIA完成签到,获得积分10
27秒前
苗龙伟完成签到 ,获得积分10
30秒前
31秒前
31秒前
32秒前
爆米花应助TangSEU采纳,获得10
34秒前
chen发布了新的文献求助10
35秒前
35秒前
liruixin发布了新的文献求助10
36秒前
氯雷他定发布了新的文献求助10
38秒前
44秒前
氯雷他定完成签到,获得积分10
45秒前
47秒前
51秒前
HL773发布了新的文献求助10
54秒前
Hello应助沐阳采纳,获得10
54秒前
C_Cppp完成签到 ,获得积分10
56秒前
沐阳完成签到,获得积分10
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
就123发布了新的文献求助10
1分钟前
英俊的铭应助豆豆眼采纳,获得10
1分钟前
llll完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
1分钟前
852应助llll采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041