A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring

计算机科学 自动化 标准化 水质 人工智能 工程类 生态学 机械工程 生物 操作系统
作者
Matthew Lowe,Ruwen Qin,Xinwei Mao
出处
期刊:Water [MDPI AG]
卷期号:14 (9): 1384-1384 被引量:159
标识
DOI:10.3390/w14091384
摘要

Artificial-intelligence methods and machine-learning models have demonstrated their ability to optimize, model, and automate critical water- and wastewater-treatment applications, natural-systems monitoring and management, and water-based agriculture such as hydroponics and aquaponics. In addition to providing computer-assisted aid to complex issues surrounding water chemistry and physical/biological processes, artificial intelligence and machine-learning (AI/ML) applications are anticipated to further optimize water-based applications and decrease capital expenses. This review offers a cross-section of peer reviewed, critical water-based applications that have been coupled with AI or ML, including chlorination, adsorption, membrane filtration, water-quality-index monitoring, water-quality-parameter modeling, river-level monitoring, and aquaponics/hydroponics automation/monitoring. Although success in control, optimization, and modeling has been achieved with the AI methods, ML models, and smart technologies (including the Internet of Things (IoT), sensors, and systems based on these technologies) that are reviewed herein, key challenges and limitations were common and pervasive throughout. Poor data management, low explainability, poor model reproducibility and standardization, as well as a lack of academic transparency are all important hurdles to overcome in order to successfully implement these intelligent applications. Recommendations to aid explainability, data management, reproducibility, and model causality are offered in order to overcome these hurdles and continue the successful implementation of these powerful tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助南非的猫采纳,获得10
1秒前
高高代珊完成签到 ,获得积分10
1秒前
Akim应助阿水采纳,获得10
1秒前
郝飞飞完成签到,获得积分10
2秒前
简单灵凡完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
cctv_x发布了新的文献求助10
5秒前
5秒前
淋湿巴黎发布了新的文献求助10
5秒前
6秒前
科研通AI5应助浪而而采纳,获得10
6秒前
7秒前
谦让的傲云完成签到,获得积分10
7秒前
柳相赫发布了新的文献求助10
8秒前
复杂真发布了新的文献求助10
8秒前
1111完成签到 ,获得积分10
8秒前
wzt完成签到,获得积分10
8秒前
hushan53发布了新的文献求助30
9秒前
9秒前
不正直跳跳糖完成签到,获得积分10
9秒前
10秒前
10秒前
钱多多发布了新的文献求助10
10秒前
koiiii完成签到,获得积分10
10秒前
zzz完成签到 ,获得积分10
12秒前
12秒前
wsh发布了新的文献求助10
13秒前
科研通AI2S应助积极的音响采纳,获得10
13秒前
科研通AI5应助鳗鱼没采纳,获得10
13秒前
Inevitable完成签到,获得积分10
13秒前
13秒前
wc完成签到,获得积分10
14秒前
赘婿应助多情最是春庭雪采纳,获得10
16秒前
香蕉觅云应助淋湿巴黎采纳,获得10
16秒前
科研通AI5应助上前线采纳,获得10
17秒前
壁上同年发布了新的文献求助10
17秒前
17秒前
一由天完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045