Artifact Reduction for Sparse-View CT Using Deep Learning With Band Patch

条纹 人工智能 计算机科学 工件(错误) 还原(数学) 模式识别(心理学) 计算机视觉 深度学习 卷积神经网络 迭代重建 压缩传感 数学 光学 物理 几何学
作者
Takuji Okamoto,Takashi Ohnishi,Hideaki Haneishi
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:6 (8): 859-873 被引量:12
标识
DOI:10.1109/trpms.2022.3168970
摘要

Sparse-view computed tomography (CT), an imaging technique that reduces the number of projections, can reduce the total scan duration and radiation dose. However, sparse data sampling causes streak artifacts on images reconstructed with analytical algorithms. In this article, we propose an artifact reduction method for sparse-view CT using deep learning. We developed a lightweight fully convolutional network to estimate a fully sampled sinogram from a sparse-view sinogram by enlargement in the vertical direction. Furthermore, we introduced the band patch, a rectangular region cropped in the vertical direction, as an input image for the network based on the sinogram’s characteristics. Comparison experiments using a swine rib dataset of micro-CT scans and a chest dataset of clinical CT scans were conducted to compare the proposed method, improved U-net from a previous study, and the U-net with band patches. The experimental results showed that the proposed method achieved the best performance and the U-net with band patches had the second-best result in terms of accuracy and prediction time. In addition, the reconstructed images of the proposed method suppressed streak artifacts while preserving the object’s structural information. We confirmed that the proposed method and band patch are useful for artifact reduction for sparse-view CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助胡胡采纳,获得10
1秒前
三千世界完成签到,获得积分10
1秒前
lemon完成签到,获得积分10
1秒前
欢喜的从彤完成签到,获得积分10
1秒前
Lucas应助笨笨的店员采纳,获得10
1秒前
uu完成签到,获得积分20
2秒前
2秒前
mhl11应助詹密采纳,获得10
2秒前
AN77777完成签到,获得积分20
2秒前
ZHU发布了新的文献求助50
3秒前
搜集达人应助秦无施采纳,获得10
3秒前
sober完成签到 ,获得积分10
3秒前
华仔应助温暖的碧蓉采纳,获得10
4秒前
animages完成签到,获得积分10
4秒前
caozhi发布了新的文献求助10
5秒前
hsuan风向仪完成签到,获得积分10
5秒前
无花果应助kyb5623采纳,获得10
6秒前
uu发布了新的文献求助10
6秒前
whyzz发布了新的文献求助10
7秒前
赘婿应助Muze采纳,获得10
8秒前
8秒前
8秒前
烟花应助明亮映阳采纳,获得10
8秒前
Stephen完成签到,获得积分10
10秒前
典雅的俊驰应助文件撤销了驳回
10秒前
乐乐应助xy采纳,获得10
11秒前
余姓懒完成签到,获得积分10
11秒前
长安发布了新的文献求助10
12秒前
王美娟完成签到,获得积分10
12秒前
13秒前
klb13应助科研通管家采纳,获得10
13秒前
mmyhn应助科研通管家采纳,获得10
13秒前
124应助科研通管家采纳,获得30
13秒前
13秒前
毛豆应助科研通管家采纳,获得30
13秒前
13秒前
田様应助科研通管家采纳,获得10
14秒前
zyinnnnnnni完成签到,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215