Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit

功勋 半最大全宽 等离子体子 表面等离子共振 材料科学 格子(音乐) 诺共振 纳米技术 激发 光电子学 共振(粒子物理) 波长 光学 纳米颗粒 物理 原子物理学 声学 量子力学
作者
Lei Wang,Qi Wang,Tieqiang Wang,Wan‐Ming Zhao,Xiangyu Yin,Ju-Xin Jiang,Shu-Shuai Zhang
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (16): 6144-6151 被引量:6
标识
DOI:10.1039/d1nr08341d
摘要

Due to the natural accumulation of radiation losses arising from the localization and random arrangement of nanoparticles, the figure of merit (FOM) of localized surface plasmon resonance (LSPR) sensors is usually very low (the value is usually less than 5 RIU-1). However, radiation losses of individual particles will be offset by adjusting the phase of the scattered field which is dependent on the structure parameters of arrays. Based on this, a two-dimensional periodic crescent nanoarray-based surface lattice resonance (SLR) sensor with a high FOM is proposed in this work. Some significant results have been obtained by mode field analysis and adjustment of structural parameters. On the one hand, the line-shape of the SLR spectrum is divided into a Fano-like line and a separate line. And the former usually has an FOM of 101 magnitude while the latter has an FOM of 103 magnitude. On the other hand, the relative size of the excitation wavelengths between SLR and LSPR is also vital. The FOM is higher but resonance depth decreases faster when the relative size increases. In this work, a full width at half-maximum (FWHM) of less than 0.5 nm and FOM of more than 1000 RIU-1 (the quality factor is more than 3000) are achieved by the proposed crescent nanoarrays. In addition, this structure demonstrates that plasmonic nanoarray-based SLR has enormous potential in trace substance detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助魏伯安采纳,获得10
1秒前
哈密哈密完成签到,获得积分10
1秒前
1秒前
Ava应助浪迹天涯采纳,获得10
1秒前
2秒前
安南发布了新的文献求助10
2秒前
3秒前
healthy完成签到 ,获得积分10
3秒前
4秒前
刘大可完成签到,获得积分10
4秒前
7秒前
su发布了新的文献求助10
7秒前
rookie发布了新的文献求助10
8秒前
方勇飞发布了新的文献求助10
9秒前
郭菱香完成签到 ,获得积分20
9秒前
皮念寒完成签到,获得积分10
9秒前
顺其自然_666888完成签到,获得积分10
9秒前
10秒前
向上的小v完成签到 ,获得积分10
11秒前
11秒前
13秒前
酷酷紫蓝完成签到 ,获得积分10
13秒前
13秒前
方勇飞完成签到,获得积分10
13秒前
LYZ完成签到,获得积分10
13秒前
黄景滨完成签到 ,获得积分20
14秒前
14秒前
123456完成签到,获得积分20
14秒前
hkl1542完成签到,获得积分10
15秒前
15秒前
caohuijun发布了新的文献求助10
16秒前
杳鸢应助韦颖采纳,获得20
17秒前
17秒前
wshwx完成签到 ,获得积分10
17秒前
17秒前
魏伯安发布了新的文献求助10
18秒前
18秒前
传奇3应助daniel采纳,获得10
18秒前
ding应助帅气的听莲采纳,获得10
18秒前
sunshine完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824