Operando X-ray diffraction study of thermal and phase evolution during laser powder bed fusion of Al-Sc-Zr elemental powder blends

材料科学 等轴晶 融合 合金 降水 相(物质) 衍射 粉末衍射 分析化学(期刊) 大气温度范围 复合材料 冶金 结晶学 热力学 光学 物理 哲学 气象学 有机化学 化学 色谱法 语言学
作者
Jennifer A. Glerum,Samy Hocine,Cynthia Sin Ting Chang,Christoph Kenel,S. Van Petegem,Nicola Casati,Darío Ferreira Sánchez,H. Van Swygenhoven,David C. Dunand
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:55: 102806-102806 被引量:24
标识
DOI:10.1016/j.addma.2022.102806
摘要

Elemental powder blends are an emerging alternative to prealloyed powders for high-throughput alloy design via additive manufacturing techniques. Elemental Al+Sc(+Zr) powder blends were processed by laser powder bed fusion into Al-Sc and Al-Sc-Zr alloys, with operando X-ray diffraction at the Swiss Light Source extracting the structural and thermal history of the process. The pure Sc and Zr particles were found to react with the molten Al pool at 550–650 °C, well below their respective melting temperatures. Various scan areas (1 × 1, 2 × 2, 4 × 4, and 8 × 2 mm2) were studied to compare (i) the base plate "preheating" effect caused by prior laser scans, (ii) the return temperature reached after the melting scan and before the following scan, (iii) the initial cooling rate immediately after solidification, and (iv) the time spent in the "intrinsic heat treatment range", defined as 300–650 °C, where secondary Al3(Sc,Zr) precipitation occurs. Microstructural analysis of the as-built samples show 110–140 nm L12-Al3(Sc,Zr) primary precipitates at the bottom of the melt pool. The 1 × 1 mm2 samples exhibit the most elongated grains (long axis of 10 ± 5 µm), which correlates with the highest build plate temperature and the slowest initial cooling rate (3–5 × 105 K/s). In comparison, the 4 × 4 mm2 samples exhibit the smallest equiaxed grains (2 ± 0.6 µm), corresponding to the lowest build plate temperature and the fastest initial cooling rate (6–7 × 105 K/s). These results indicate the need for establishing a minimum feature size during part design, or for modifying the laser parameters during processing, to mitigate microstructure and performance differences across features of different sizes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼不鱼完成签到,获得积分10
2秒前
3秒前
彭半梦发布了新的文献求助10
3秒前
env完成签到,获得积分10
4秒前
文艺的曼柔完成签到 ,获得积分10
4秒前
碧蓝的盼夏完成签到,获得积分10
4秒前
单薄茗完成签到,获得积分10
5秒前
5秒前
科研通AI6应助木棉哆哆采纳,获得10
5秒前
雪凝清霜发布了新的文献求助10
5秒前
6秒前
刘稀完成签到,获得积分10
6秒前
miaomiao完成签到,获得积分10
7秒前
陆菱柒发布了新的文献求助10
7秒前
7秒前
阔达的金鱼完成签到,获得积分10
7秒前
是我完成签到,获得积分10
7秒前
iuuu发布了新的文献求助10
8秒前
lhy发布了新的文献求助10
8秒前
9秒前
Lily完成签到,获得积分10
9秒前
9秒前
彭半梦完成签到,获得积分10
9秒前
10秒前
易晨曦发布了新的文献求助10
10秒前
聪明的可愁完成签到,获得积分10
10秒前
核桃发布了新的文献求助10
10秒前
10秒前
wanci应助xzh采纳,获得10
10秒前
LY完成签到 ,获得积分10
11秒前
单薄的尔烟完成签到 ,获得积分10
11秒前
11秒前
12秒前
可爱的函函应助CA737采纳,获得10
12秒前
研友_VZG7GZ应助香香香采纳,获得10
12秒前
zSmart发布了新的文献求助10
12秒前
漂亮豁完成签到,获得积分10
13秒前
妮妮完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598