表观遗传学
DNA甲基化
生物年龄
细胞老化
端粒
2019年冠状病毒病(COVID-19)
甲基化
生物
衰老
医学
遗传学
作者
Xue Cao,Wenjuan Li,Ting Wang,Dongzhi Ran,Veronica Davalos,Laura Planas-Serra,Aurora Pujol,Manel Esteller,Xiaolin Wang,Huichuan Yu
标识
DOI:10.1038/s41467-022-29801-8
摘要
Abstract Chronological age is a risk factor for SARS-CoV-2 infection and severe COVID-19. Previous findings indicate that epigenetic age could be altered in viral infection. However, the epigenetic aging in COVID-19 has not been well studied. In this study, DNA methylation of the blood samples from 232 healthy individuals and 413 COVID-19 patients is profiled using EPIC methylation array. Epigenetic ages of each individual are determined by applying epigenetic clocks and telomere length estimator to the methylation profile of the individual. Epigenetic age acceleration is calculated and compared between groups. We observe strong correlations between the epigenetic clocks and individual’s chronological age ( r > 0.8, p < 0.0001). We also find the increasing acceleration of epigenetic aging and telomere attrition in the sequential blood samples from healthy individuals and infected patients developing non-severe and severe COVID-19. In addition, the longitudinal DNA methylation profiling analysis find that the accumulation of epigenetic aging from COVID-19 syndrome could be partly reversed at late clinic phases in some patients. In conclusion, accelerated epigenetic aging is associated with the risk of SARS-CoV-2 infection and developing severe COVID-19. In addition, the accumulation of epigenetic aging from COVID-19 may contribute to the post-COVID-19 syndrome among survivors.
科研通智能强力驱动
Strongly Powered by AbleSci AI