断层(地质)
计算机科学
代表(政治)
振动
方位(导航)
一致性(知识库)
人工智能
医学诊断
特征学习
深度学习
机器学习
分布式计算
控制工程
工程类
病理
地质学
地震学
政治
医学
法学
量子力学
物理
政治学
作者
Zhe Chen,Shiqing Tian,Shi Xiaotao,Huimin Lu
出处
期刊:IEEE Transactions on Industrial Informatics
[Institute of Electrical and Electronics Engineers]
日期:2022-03-30
卷期号:19 (1): 447-458
被引量:24
标识
DOI:10.1109/tii.2022.3148289
摘要
Rotating machinery is ubiquitous, and its failures constitute a major cause of the failures of transportation infrastructures. Most fault-diagnosis methods for rotating machinery are based on vibration-signal analysis because vibrations directly reflect the transient regime of machinery elements. This article proposes a novel multiscale shared-learning network (MSSLN) architecture to extract and classify the fault features inherent to multiscale factors of vibration signals. The architecture fuses layer-wise activations with multiscale flows, to enable the network to fully learn the shared representation with consistency across multiscale factors. This characteristic helps MSSLN provide more faithful diagnoses than existing single- and multiscale methods. Experiments on bearing and gearbox datasets are used to evaluate the fault-diagnosis performance of transportation infrastructures. Extensive experimental results and comprehensive analyses demonstrate the superiority of the proposed MSSLN in fault diagnosis for bearings and gearboxes, the two foundational elements in transportation infrastructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI