重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Distributed Multiagent Deep Reinforcement Learning for Multiline Dynamic Bus Timetable Optimization

强化学习 计算机科学 马尔可夫决策过程 北京 公共交通 启发式 交通拥挤 马尔可夫过程 对策 运筹学 运输工程 实时计算 工程类 人工智能 统计 航空航天工程 中国 法学 数学 政治学
作者
Haoyang Yan,Zhiyong Cui,Xinqiang Chen,Xiaolei Ma
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 469-479 被引量:32
标识
DOI:10.1109/tii.2022.3158651
摘要

As a primary countermeasure to mitigate traffic congestion and air pollution, promoting public transit has become a global census. Designing a robust and reliable bus timetable is a pivotal step to increase ridership and reduce operating cost for transit authorities. However, most previous studies on bus timetabling rely on historical passenger count and travel time data to generate static schedules, which often yield biased results in these uncertain scenarios, such as demand surge or adverse weather. In addition, acquiring real-time passenger origin/destination from a limited number of running buses is not feasible. This article considers the multiline dynamic bus timetable optimization problem as a Markov decision process model to address the aforementioned issues, and proposes a multiagent deep reinforcement learning framework to ensure effective learning from the imperfect-information game, where the passenger demand and traffic condition are not always known in advance. Moreover, a distributed reinforcement learning algorithm is applied to overcome the limitation of high computational cost and low efficiency. A case study of multiple bus lines in Beijing, China, confirms the effectiveness and efficiency of the proposed model. The results demonstrate that our method outperforms heuristic and state-of-the-art reinforcement learning algorithms by reducing 20.30% of operating and passenger costs compared with actual timetables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
catalyst326发布了新的文献求助10
刚刚
刚睡醒完成签到,获得积分10
刚刚
背后半凡完成签到,获得积分10
刚刚
2秒前
23333完成签到,获得积分10
2秒前
2秒前
林摆摆发布了新的文献求助10
2秒前
2秒前
小陈发布了新的文献求助10
3秒前
初空月儿发布了新的文献求助10
3秒前
ll发布了新的文献求助10
3秒前
贪玩的豪英完成签到,获得积分10
3秒前
生化爱科研完成签到,获得积分10
3秒前
细心沛山完成签到,获得积分10
3秒前
4秒前
好货分享完成签到,获得积分10
4秒前
4秒前
刚睡醒发布了新的文献求助10
5秒前
星辰大海应助sci发发发采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
mingyinowo完成签到,获得积分10
6秒前
默己发布了新的文献求助10
7秒前
jyt发布了新的文献求助40
7秒前
xiangdemeilo发布了新的文献求助10
7秒前
凤梨罐头完成签到,获得积分10
8秒前
8秒前
Jasper应助KXX采纳,获得10
8秒前
终将散落凡尘完成签到,获得积分10
8秒前
9秒前
10秒前
不安的元霜完成签到,获得积分10
10秒前
在水一方应助One_day采纳,获得10
11秒前
11秒前
科研通AI6应助幽默尔蓝采纳,获得10
11秒前
11秒前
xiaotian完成签到,获得积分10
11秒前
xiangdemeilo完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465680
求助须知:如何正确求助?哪些是违规求助? 4570071
关于积分的说明 14321831
捐赠科研通 4496440
什么是DOI,文献DOI怎么找? 2463336
邀请新用户注册赠送积分活动 1452253
关于科研通互助平台的介绍 1427489