Sparsity-Promoting Approach to Polarization Analysis of Seismic Signals in the Time–Frequency Domain

频域 极化(电化学) 傅里叶变换 时域 信号处理 计算机科学 算法 瑞利波 地震波 声学 地质学 物理 光学 地震学 数学 数学分析 波传播 电信 化学 雷达 物理化学 计算机视觉
作者
Hamzeh Mohammadigheymasi,Paul Crocker,Maryam Fathi,Eduardo Almeida,Graça Silveira,Ali Gholami,Martín Schimmel
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:8
标识
DOI:10.1109/tgrs.2022.3141580
摘要

Time–frequency (TF)-domain polarization analysis (PA) methods are widely used as a processing tool to decompose multicomponent seismic signals. However, as a drawback, they are unable to obtain sufficient resolution to discriminate between overlapping seismic phases, as they generally rely on a low-resolution time–frequency representation (TFR) method. In this article, we present a new approach to the TF-domain PA methods. More precisely, we provide an in-detailed discussion on rearranging the eigenvalue decomposition polarization analysis (EDPA) formalism in the frequency domain to obtain the frequency-dependent polarization properties from the Fourier coefficients owing to the Fourier space orthogonality. Then, by extending the formulation to the TF domain and incorporating sparsity promoting TFR (SP-TFR), we improve the resolution when estimating the TF-domain polarization parameters. Finally, an adaptive SP-TFF is applied to extract and filter different phases of the seismic wave. By processing earthquake waveforms, we show that, by combining amplitude, directivity, and rectilinearity attributes on the sparse TF-domain polarization map of the signal, we are able to extract (or filter) different phases of seismic waves. The SP-TFF method is evaluated on synthetic and real data associated with the source mechanism of the $M_{w}=8.2$ earthquake that occurred in the south-southwest of Tres Picos, Mexico. A discussion on the results is given, verifying the efficiency of the method in separating not only the Rayleigh waves from the Love waves but also in discriminating them from the body and coda waves. The codes and datasets are available at https://github.com/SigProSeismology/SP-TFF, contributing to the geoscience community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biofly526发布了新的文献求助10
刚刚
豆豆发布了新的文献求助10
1秒前
1秒前
Wanxian完成签到,获得积分10
1秒前
ABC的FGH发布了新的文献求助10
2秒前
柏忆南完成签到 ,获得积分10
3秒前
噜噜噜完成签到 ,获得积分10
3秒前
Journey完成签到,获得积分10
4秒前
小米发布了新的文献求助10
4秒前
饼饼完成签到,获得积分10
4秒前
off完成签到,获得积分10
5秒前
6秒前
6秒前
pomfret完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
科研川应助借款还款采纳,获得60
8秒前
一一应助llln采纳,获得50
8秒前
ouyoha完成签到,获得积分10
9秒前
flybird发布了新的文献求助10
10秒前
xhl完成签到,获得积分20
12秒前
caigou完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
直率的笑阳完成签到,获得积分10
13秒前
圆满组合完成签到,获得积分10
15秒前
16秒前
zzc发布了新的文献求助10
16秒前
17秒前
ABC的FGH完成签到,获得积分10
17秒前
xhl发布了新的文献求助10
18秒前
Jane2024完成签到,获得积分10
18秒前
Gong发布了新的文献求助10
19秒前
梧桐完成签到 ,获得积分10
20秒前
帅气羊完成签到,获得积分10
22秒前
彭于晏应助Trost采纳,获得10
22秒前
23秒前
浮游应助一只盒子采纳,获得10
25秒前
爆米花应助Gong采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490238
求助须知:如何正确求助?哪些是违规求助? 4588884
关于积分的说明 14421740
捐赠科研通 4520754
什么是DOI,文献DOI怎么找? 2476836
邀请新用户注册赠送积分活动 1462333
关于科研通互助平台的介绍 1435222