Sparsity-Promoting Approach to Polarization Analysis of Seismic Signals in the Time–Frequency Domain

频域 极化(电化学) 傅里叶变换 时域 信号处理 计算机科学 算法 瑞利波 地震波 声学 地质学 物理 光学 地震学 数学 数学分析 波传播 电信 化学 雷达 物理化学 计算机视觉
作者
Hamzeh Mohammadigheymasi,Paul Crocker,Maryam Fathi,Eduardo Almeida,Graça Silveira,Ali Gholami,Martín Schimmel
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:8
标识
DOI:10.1109/tgrs.2022.3141580
摘要

Time–frequency (TF)-domain polarization analysis (PA) methods are widely used as a processing tool to decompose multicomponent seismic signals. However, as a drawback, they are unable to obtain sufficient resolution to discriminate between overlapping seismic phases, as they generally rely on a low-resolution time–frequency representation (TFR) method. In this article, we present a new approach to the TF-domain PA methods. More precisely, we provide an in-detailed discussion on rearranging the eigenvalue decomposition polarization analysis (EDPA) formalism in the frequency domain to obtain the frequency-dependent polarization properties from the Fourier coefficients owing to the Fourier space orthogonality. Then, by extending the formulation to the TF domain and incorporating sparsity promoting TFR (SP-TFR), we improve the resolution when estimating the TF-domain polarization parameters. Finally, an adaptive SP-TFF is applied to extract and filter different phases of the seismic wave. By processing earthquake waveforms, we show that, by combining amplitude, directivity, and rectilinearity attributes on the sparse TF-domain polarization map of the signal, we are able to extract (or filter) different phases of seismic waves. The SP-TFF method is evaluated on synthetic and real data associated with the source mechanism of the $M_{w}=8.2$ earthquake that occurred in the south-southwest of Tres Picos, Mexico. A discussion on the results is given, verifying the efficiency of the method in separating not only the Rayleigh waves from the Love waves but also in discriminating them from the body and coda waves. The codes and datasets are available at https://github.com/SigProSeismology/SP-TFF, contributing to the geoscience community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FG完成签到,获得积分10
刚刚
昀汐完成签到 ,获得积分20
1秒前
大明完成签到 ,获得积分10
2秒前
3秒前
jin完成签到,获得积分10
3秒前
wen发布了新的文献求助10
3秒前
半夏微凉发布了新的文献求助10
3秒前
5秒前
Leonardi应助笑看人生采纳,获得200
5秒前
6秒前
6秒前
大大小小完成签到,获得积分20
7秒前
灰灰应助兜兜采纳,获得10
7秒前
Annabelle发布了新的文献求助10
7秒前
Summer完成签到,获得积分10
7秒前
Makeline完成签到 ,获得积分10
8秒前
感谢习红瑞转发科研通微信,获得积分50
8秒前
脑洞疼应助沉默小天鹅采纳,获得10
8秒前
徐CRISSE完成签到,获得积分10
9秒前
南北发布了新的文献求助10
9秒前
似是而非应助YuLu采纳,获得10
10秒前
WW发布了新的文献求助10
10秒前
gliterr发布了新的文献求助10
10秒前
NexusExplorer应助时尚友易采纳,获得10
11秒前
12秒前
GOAT完成签到,获得积分10
12秒前
13秒前
感谢独特雁玉转发科研通微信,获得积分50
13秒前
松溪乾完成签到,获得积分10
13秒前
sci发布了新的文献求助10
13秒前
华仔应助莫离采纳,获得10
13秒前
我想睡觉完成签到,获得积分10
13秒前
小皮蛋儿完成签到,获得积分10
14秒前
14秒前
ewryetru发布了新的文献求助10
14秒前
orixero应助111采纳,获得10
15秒前
15秒前
斯文败类应助栗栗栗子采纳,获得10
16秒前
mingyue应助望着拥有采纳,获得50
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259260
求助须知:如何正确求助?哪些是违规求助? 2900994
关于积分的说明 8313192
捐赠科研通 2570268
什么是DOI,文献DOI怎么找? 1396371
科研通“疑难数据库(出版商)”最低求助积分说明 653468
邀请新用户注册赠送积分活动 631476