分子图
计算机科学
编码
图形
理论计算机科学
知识图
编码器
特征学习
领域知识
代表(政治)
人工智能
自然语言处理
化学
政治
基因
操作系统
法学
生物化学
政治学
作者
Fang‐Fang Yin,Qiang Zhang,Hengquan Yang,Xiang Zhuang,Shumin Deng,Wen Zhang,Ming Qin,Zhuo Chen,Xiaohui Fan,Huajun Chen
出处
期刊:Cornell University - arXiv
日期:2021-12-01
标识
DOI:10.48550/arxiv.2112.00544
摘要
Molecular representation learning contributes to multiple downstream tasks such as molecular property prediction and drug design. To properly represent molecules, graph contrastive learning is a promising paradigm as it utilizes self-supervision signals and has no requirements for human annotations. However, prior works fail to incorporate fundamental domain knowledge into graph semantics and thus ignore the correlations between atoms that have common attributes but are not directly connected by bonds. To address these issues, we construct a Chemical Element Knowledge Graph (KG) to summarize microscopic associations between elements and propose a novel Knowledge-enhanced Contrastive Learning (KCL) framework for molecular representation learning. KCL framework consists of three modules. The first module, knowledge-guided graph augmentation, augments the original molecular graph based on the Chemical Element KG. The second module, knowledge-aware graph representation, extracts molecular representations with a common graph encoder for the original molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to encode complex information in the augmented molecular graph. The final module is a contrastive objective, where we maximize agreement between these two views of molecular graphs. Extensive experiments demonstrated that KCL obtained superior performances against state-of-the-art baselines on eight molecular datasets. Visualization experiments properly interpret what KCL has learned from atoms and attributes in the augmented molecular graphs. Our codes and data are available at https://github.com/ZJU-Fangyin/KCL.
科研通智能强力驱动
Strongly Powered by AbleSci AI