Prediction of coal wettability using machine learning for the application of CO2 sequestration

自适应神经模糊推理系统 接触角 人工神经网络 固碳 润湿 工艺工程 石油工程 过程(计算) 环境科学 工程类 计算机科学 人工智能 模糊逻辑 二氧化碳 废物管理 模糊控制系统 化学 化学工程 有机化学 操作系统
作者
Ahmed Farid Ibrahim
出处
期刊:International Journal of Greenhouse Gas Control [Elsevier]
卷期号:118: 103670-103670 被引量:17
标识
DOI:10.1016/j.ijggc.2022.103670
摘要

Carbon capture, utilization, and storage (CCUS) is an essential greenhouse gas-reducing technology that can be employed throughout the energy system. Carbon dioxide (CO2) sequestration in underground stratas is one of the effecient ways of reducing carbon emissions. CO2 sequestration in coal formations can be used to improve the methane recovery from coal formations (ECBM). The efficiency of this process highly depend on the wettability of the coal in contact with CO2. Different experimental methods including contact angle (CA) measurments can be used to estimate the wettability. However, the experimental techniques are expensive, incosistant, and time-consuming. Therefore, this study introduces the application of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) to estimate the CA in coal–water–CO2 system. ANN and ANFIS techniques were built using 250 point dataset to calculate the contact angle of coal formation. The input parameters were the coal properties, operating pressure, and temperature. 70% of the data set was used to train the model, while 30% of the data was used for the testing process. The models were then validated with a set of unseen data. The results showed that ANN and ANFIS models accurately predicted the contact angle in the coal–water–CO2 system as a function of coal properties and the operating conditions. The correlation coefficient (R) and the average absolute percent error (AAPE) between the actual and estimated contact angle were used as indicators for the model performance. ANN and ANFIS models predicted the contact angle with R values higher than 0.96 for the different datasets. AAPE was less than 7% in both models for the training and testing datasets. An empirical equation was built using the weight and biases from the developed ANN model. The new equation was validated with the unseen data set and the R-value was found to be higher than 0.96 with an AAPE less than 6%.these results confirm the reliability of the proposed models to get the contact angle in the coal formation without laboratory work or complex calculations. These models can be used to screen the coal formation targets for carbon storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助明亮访烟采纳,获得10
刚刚
sssss发布了新的文献求助10
刚刚
1秒前
炼金术士完成签到,获得积分10
1秒前
秋裤掉了发布了新的文献求助10
2秒前
2秒前
2秒前
丁璐完成签到,获得积分10
3秒前
周乘风完成签到,获得积分10
3秒前
呆毛发布了新的文献求助10
4秒前
ziqiao发布了新的文献求助10
5秒前
大个应助包宇采纳,获得10
5秒前
思源应助韦一手采纳,获得10
5秒前
黑粉头头发布了新的文献求助10
5秒前
英俊的铭应助周乘风采纳,获得10
6秒前
ytrewq完成签到 ,获得积分10
7秒前
8秒前
小肥吴完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
lily发布了新的文献求助10
12秒前
包宇完成签到,获得积分10
12秒前
张小咩咩完成签到 ,获得积分10
12秒前
13秒前
13秒前
薰硝壤应助MMMM采纳,获得10
13秒前
CipherSage应助hahaha123213123采纳,获得10
13秒前
zoe发布了新的文献求助10
14秒前
春夏秋冬发布了新的文献求助10
14秒前
我是老大应助自然涵易采纳,获得10
15秒前
橘子完成签到,获得积分10
15秒前
大模型应助TWei采纳,获得10
16秒前
WKK发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
sjc发布了新的文献求助10
16秒前
微笑的语芙完成签到,获得积分10
17秒前
heiztcasino发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706