Prediction of coal wettability using machine learning for the application of CO2 sequestration

自适应神经模糊推理系统 接触角 人工神经网络 固碳 润湿 工艺工程 石油工程 过程(计算) 环境科学 工程类 计算机科学 人工智能 模糊逻辑 二氧化碳 废物管理 模糊控制系统 化学 化学工程 有机化学 操作系统
作者
Ahmed Farid Ibrahim
出处
期刊:International Journal of Greenhouse Gas Control [Elsevier]
卷期号:118: 103670-103670 被引量:17
标识
DOI:10.1016/j.ijggc.2022.103670
摘要

Carbon capture, utilization, and storage (CCUS) is an essential greenhouse gas-reducing technology that can be employed throughout the energy system. Carbon dioxide (CO2) sequestration in underground stratas is one of the effecient ways of reducing carbon emissions. CO2 sequestration in coal formations can be used to improve the methane recovery from coal formations (ECBM). The efficiency of this process highly depend on the wettability of the coal in contact with CO2. Different experimental methods including contact angle (CA) measurments can be used to estimate the wettability. However, the experimental techniques are expensive, incosistant, and time-consuming. Therefore, this study introduces the application of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) to estimate the CA in coal–water–CO2 system. ANN and ANFIS techniques were built using 250 point dataset to calculate the contact angle of coal formation. The input parameters were the coal properties, operating pressure, and temperature. 70% of the data set was used to train the model, while 30% of the data was used for the testing process. The models were then validated with a set of unseen data. The results showed that ANN and ANFIS models accurately predicted the contact angle in the coal–water–CO2 system as a function of coal properties and the operating conditions. The correlation coefficient (R) and the average absolute percent error (AAPE) between the actual and estimated contact angle were used as indicators for the model performance. ANN and ANFIS models predicted the contact angle with R values higher than 0.96 for the different datasets. AAPE was less than 7% in both models for the training and testing datasets. An empirical equation was built using the weight and biases from the developed ANN model. The new equation was validated with the unseen data set and the R-value was found to be higher than 0.96 with an AAPE less than 6%.these results confirm the reliability of the proposed models to get the contact angle in the coal formation without laboratory work or complex calculations. These models can be used to screen the coal formation targets for carbon storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哦吼完成签到,获得积分10
刚刚
刚刚
lm发布了新的文献求助10
1秒前
月白发布了新的文献求助10
1秒前
π.完成签到,获得积分10
2秒前
2秒前
李健应助长情洙采纳,获得10
2秒前
2秒前
科研小白完成签到,获得积分10
3秒前
3秒前
RandyD发布了新的文献求助10
3秒前
3秒前
最最最发布了新的文献求助10
3秒前
4秒前
π.发布了新的文献求助10
4秒前
5秒前
yangyangyang发布了新的文献求助10
5秒前
siccy完成签到 ,获得积分10
5秒前
图南关注了科研通微信公众号
6秒前
我是老大应助Mrrr采纳,获得10
6秒前
ZTT发布了新的文献求助10
6秒前
调皮的凝旋完成签到,获得积分10
6秒前
JiangY完成签到,获得积分10
6秒前
妮妮爱smile完成签到,获得积分10
7秒前
咕噜仔发布了新的文献求助10
7秒前
8秒前
研友_VZG7GZ应助King16采纳,获得10
8秒前
lyn发布了新的文献求助10
8秒前
瑰夏完成签到,获得积分20
8秒前
喜洋洋发布了新的文献求助10
8秒前
ZL发布了新的文献求助10
8秒前
zhang发布了新的文献求助10
8秒前
8秒前
顺利的爆米花完成签到 ,获得积分10
9秒前
沉静秋尽完成签到,获得积分10
9秒前
大个应助沉静的颦采纳,获得10
9秒前
657完成签到 ,获得积分10
9秒前
9秒前
执念完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759