亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of coal wettability using machine learning for the application of CO2 sequestration

自适应神经模糊推理系统 接触角 人工神经网络 固碳 润湿 工艺工程 石油工程 过程(计算) 环境科学 工程类 计算机科学 人工智能 模糊逻辑 二氧化碳 废物管理 模糊控制系统 化学 化学工程 有机化学 操作系统
作者
Ahmed Farid Ibrahim
出处
期刊:International Journal of Greenhouse Gas Control [Elsevier BV]
卷期号:118: 103670-103670 被引量:17
标识
DOI:10.1016/j.ijggc.2022.103670
摘要

Carbon capture, utilization, and storage (CCUS) is an essential greenhouse gas-reducing technology that can be employed throughout the energy system. Carbon dioxide (CO2) sequestration in underground stratas is one of the effecient ways of reducing carbon emissions. CO2 sequestration in coal formations can be used to improve the methane recovery from coal formations (ECBM). The efficiency of this process highly depend on the wettability of the coal in contact with CO2. Different experimental methods including contact angle (CA) measurments can be used to estimate the wettability. However, the experimental techniques are expensive, incosistant, and time-consuming. Therefore, this study introduces the application of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) to estimate the CA in coal–water–CO2 system. ANN and ANFIS techniques were built using 250 point dataset to calculate the contact angle of coal formation. The input parameters were the coal properties, operating pressure, and temperature. 70% of the data set was used to train the model, while 30% of the data was used for the testing process. The models were then validated with a set of unseen data. The results showed that ANN and ANFIS models accurately predicted the contact angle in the coal–water–CO2 system as a function of coal properties and the operating conditions. The correlation coefficient (R) and the average absolute percent error (AAPE) between the actual and estimated contact angle were used as indicators for the model performance. ANN and ANFIS models predicted the contact angle with R values higher than 0.96 for the different datasets. AAPE was less than 7% in both models for the training and testing datasets. An empirical equation was built using the weight and biases from the developed ANN model. The new equation was validated with the unseen data set and the R-value was found to be higher than 0.96 with an AAPE less than 6%.these results confirm the reliability of the proposed models to get the contact angle in the coal formation without laboratory work or complex calculations. These models can be used to screen the coal formation targets for carbon storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Eileen采纳,获得10
6秒前
Zephyr发布了新的文献求助200
9秒前
杨柳完成签到,获得积分10
41秒前
41秒前
量子星尘发布了新的文献求助10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
情怀应助555557采纳,获得10
1分钟前
传奇3应助自信寻真采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
111111111完成签到,获得积分10
2分钟前
Rondab应助lankbki123采纳,获得10
2分钟前
ionicliquids发布了新的文献求助10
2分钟前
Jy完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
赫如冰完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
555557完成签到,获得积分10
3分钟前
聂青枫完成签到,获得积分10
3分钟前
黄黄黄应助Mannone采纳,获得10
3分钟前
3分钟前
3分钟前
555557发布了新的文献求助10
3分钟前
Liufgui应助Mannone采纳,获得10
3分钟前
3分钟前
hahah发布了新的文献求助10
3分钟前
小宋应助hahah采纳,获得20
3分钟前
hahah完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
毓雅完成签到,获得积分10
4分钟前
4分钟前
雨过天晴发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
李健应助雨过天晴采纳,获得10
4分钟前
firesquall完成签到,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188