VNIR公司
高光谱成像
遥感
偏最小二乘回归
均方误差
环境科学
光谱带
地质学
数学
统计
作者
Wendong Sun,Shuo Liu,Xia Zhang,Haitao Zhu
标识
DOI:10.1016/j.scitotenv.2022.153766
摘要
Reflectance spectroscopy in visible, near-infrared, and short-wave infrared (VNIR-SWIR) region has been recognized as a promising alternative for prediction of heavy metal concentration in soil. Compared with VNIR-SWIR reflectance spectroscopy, VNIR reflectance spectroscopy is less affected by atmospheric water vapor and has relatively high signal to noise ratio. The performances of VNIR and VNIR-SWIR hyperspectral data in predicting and mapping heavy metal concentration in soil were explored. In this study, laboratory spectra of soil samples collected from an agricultural area and Advanced Hyperspectral Imaging (AHSI) remote sensing imagery were used to predict and map zinc (Zn) concentration with genetic algorithm and partial least squares regression (GA-PLSR). The entire spectral regions of VNIR-SWIR and VNIR and spectral subsets extracted from the entire spectral regions were used in the prediction. For the laboratory spectra, the combination of the spectral bands extracted from the absorption features at 500 nm and in 600-800 nm obtained the highest prediction accuracy with the root mean square error (RMSE) and coefficient of determination (R2) values of 8.90 mg kg-1 and 0.72. For soil spectra from AHSI remote sensing imagery, the highest prediction accuracy was achieved by using the spectral bands extracted from the absorption feature in 600-800 nm with the RMSE and R2 values of 9.02 mg kg-1 and 0.75. Soil Zn concentration maps were generated with the established prediction models using AHSI remote sensing imagery. Analysis on the Zn concentration maps shows that the prediction model established using the spectral bands extracted from the absorption feature in 600-800 nm has a better performance in mapping Zn concentration. The results indicate that VNIR hyperspectral data outperforms VNIR-SWIR hyperspectral data in predicting and mapping Zn concentration in soil, which provides an alternative to the application of hyperspectral data in soil science.
科研通智能强力驱动
Strongly Powered by AbleSci AI