Performance of hyperspectral data in predicting and mapping zinc concentration in soil

VNIR公司 高光谱成像 遥感 偏最小二乘回归 均方误差 环境科学 光谱带 地质学 数学 统计
作者
Wendong Sun,Shuo Liu,Xia Zhang,Haitao Zhu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:824: 153766-153766 被引量:18
标识
DOI:10.1016/j.scitotenv.2022.153766
摘要

Reflectance spectroscopy in visible, near-infrared, and short-wave infrared (VNIR-SWIR) region has been recognized as a promising alternative for prediction of heavy metal concentration in soil. Compared with VNIR-SWIR reflectance spectroscopy, VNIR reflectance spectroscopy is less affected by atmospheric water vapor and has relatively high signal to noise ratio. The performances of VNIR and VNIR-SWIR hyperspectral data in predicting and mapping heavy metal concentration in soil were explored. In this study, laboratory spectra of soil samples collected from an agricultural area and Advanced Hyperspectral Imaging (AHSI) remote sensing imagery were used to predict and map zinc (Zn) concentration with genetic algorithm and partial least squares regression (GA-PLSR). The entire spectral regions of VNIR-SWIR and VNIR and spectral subsets extracted from the entire spectral regions were used in the prediction. For the laboratory spectra, the combination of the spectral bands extracted from the absorption features at 500 nm and in 600-800 nm obtained the highest prediction accuracy with the root mean square error (RMSE) and coefficient of determination (R2) values of 8.90 mg kg-1 and 0.72. For soil spectra from AHSI remote sensing imagery, the highest prediction accuracy was achieved by using the spectral bands extracted from the absorption feature in 600-800 nm with the RMSE and R2 values of 9.02 mg kg-1 and 0.75. Soil Zn concentration maps were generated with the established prediction models using AHSI remote sensing imagery. Analysis on the Zn concentration maps shows that the prediction model established using the spectral bands extracted from the absorption feature in 600-800 nm has a better performance in mapping Zn concentration. The results indicate that VNIR hyperspectral data outperforms VNIR-SWIR hyperspectral data in predicting and mapping Zn concentration in soil, which provides an alternative to the application of hyperspectral data in soil science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助,,,采纳,获得10
1秒前
现代的芹发布了新的文献求助10
3秒前
啥也不会完成签到 ,获得积分10
3秒前
11122发布了新的文献求助10
4秒前
vina发布了新的文献求助10
5秒前
亭子给亭子的求助进行了留言
6秒前
907lh完成签到,获得积分10
6秒前
6秒前
8秒前
桐桐应助gshan04采纳,获得10
8秒前
8秒前
华仔应助乐怡日尧采纳,获得10
9秒前
松栗奶芙hh关注了科研通微信公众号
9秒前
aaaaa发布了新的文献求助10
11秒前
13秒前
Stanfuny完成签到,获得积分10
13秒前
爆米花应助猫猫采纳,获得10
14秒前
田様应助jiajia采纳,获得10
15秒前
nick完成签到,获得积分10
15秒前
16秒前
卓矢完成签到 ,获得积分10
16秒前
万能图书馆应助爱笑映菡采纳,获得10
20秒前
21秒前
22秒前
25秒前
25秒前
26秒前
26秒前
26秒前
26秒前
27秒前
27秒前
28秒前
28秒前
29秒前
ei123应助love采纳,获得20
29秒前
刘火旺完成签到,获得积分20
30秒前
111发布了新的文献求助10
30秒前
现代的芹完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676583
求助须知:如何正确求助?哪些是违规求助? 3230784
关于积分的说明 9792512
捐赠科研通 2941880
什么是DOI,文献DOI怎么找? 1612889
邀请新用户注册赠送积分活动 761348
科研通“疑难数据库(出版商)”最低求助积分说明 736776